

HOUSE
Second Floor, MGM Tower, 19 Ansari Road, Daryaganj, New Delhi-1 10002 (India)
Phone : +91-11-43556600
Fax : +91-11-43556688
E-mail : delhi@saraswatihouse.com
Website : www.saraswatihouse.com
CIN : U22110DL2013PTC262320
Import-Export Licence No. 0513086293

Branches:

- Ahmedabad (079) 22160722 • Bengaluru (080) 26619880, 26676396
- Bhopal +91-7554003654 • Chennai (044) 28416531 • Dehradun 09837452852
- Guwahati (0361) 2457198 • Hyderabad (040) 42615566 • Jaipur (0141) 4006022
- Jalandhar (0181) 4642600, 4643600 • Kochi (0484) 4033369 • Kolkata (033) 40042314
- Lucknow (0522) 4062517•Mumbai (022) 28737050, 28737090
- Nagpur + 91-7066149006• Patna (0612) 2275403 • Ranchi (0651) 2244654

Revised Edition 2018

TM Code: 2017007000073
Published by: New Saraswati House (India) Pvt. Ltd.
19 Ansari Road, Daryaganj, New Delhi-110002 (India)
The moral rights of the author has been asserted.
©Reserved with the Publishers

All rights reserved under the Copyright Act. No part of this publication may be reproduced, transcribed, transmitted, stored in a retrieval system or translated into any language or computer, in any form or by any means, electronic, mechanical, magnetic, optical, chemical, manual, photocopy or otherwise without the prior permission of the copyright owner. Any person who does any unauthorised act in relation to this publication may be liable to criminal prosecution and civil claims for damages.

Printed at: Vikas Publishing House Pvt. Ltd., Sahibabad (Uttar Pradesh)
Product Code: NSS3PCS106MATAA17CBN
This book is meant for educational and learning purposes. The author(s) of the book has/have taken all reasonable care to ensure that the contents of the book do not violate any copyright or other intellectual property rights of any person in any manner whatsoever. In the event the author(s) has/have been unable to track any source and if any copyright has been inadvertently infringed, please notify the publisher in writing for any corrective action.

CONTENTS

1. Real Numbers
> Worksheets (1 to 7) 5

- Chapter Test 11

2. Polynomials
> Worksheets (9 to 15) 13

- Chapter Test 23

3. Pair of Linear Equations in Two Variables
> Worksheets (16 to 27) 25

- Chapter Test 41

4. Quadratic Equations
> Worksheets (29 to 41) 44

- Chapter Test 59

5. Arithmetic Progressions
> Worksheets (43 to 52) 61

- Chapter Test 71

6. Introduction to Trigonometry
> Worksheets (54 to 63) 73

- Chapter Test 85

7. Some Applications of Trigonometry
> Worksheets (65 to 71) 87

- Chapter Test 97

8. Coordinate Geometry
> Worksheets (73 to 83) 99

- Chapter Test 114

9. Triangles
> Worksheets (84 to 95) 116

- Chapter Test 133

10. Circles
> Worksheets (98 to 104) 135

- Chapter Test 143

11. Constructions
> Worksheets (106 to 111) 145

- Chapter Test 160

12. Areas Related to Circles
> Worksheets (114 to 119) 162

- Chapter Test 169

13. Surface Areas and Volumes
> Worksheets (121 to 127) 171

- Chapter Test 180

14. Statistics
> Worksheets (129 to 133) 183

- Chapter Test 191

15. Probability
> Worksheets (135 to 138) 193

- Chapter Test 197
Practice Paper - 1 (Solution) 199
Practice Paper - 2 (Solution) 208
Practice Paper - $\mathbf{3}$ (Solution) 216
Practice Paper - 4 (Solution) 223
Practice Paper - 5 (Solution) 232

WORKSHEET-1

1. We know that the factors of a prime are 1 and the prime itself only.
Therefore, the common factor of p and q will be 1 only. Hence, $\operatorname{HCF}(p, q)=1$.
2. As prime factors of 1005 are:
$1005=5 \times 3 \times 67$.
$\therefore 7$ is not a prime factor of 1005 .
3. $\frac{125}{2^{4} \cdot 5^{3}}=\frac{5^{3}}{16 \times 5^{3}}=\frac{1}{16}=0.0625$

Clearly, the decimal form of $\frac{125}{2^{4} \cdot 5^{3}}$
terminates after four places.
4. Terminating

Hint: $\frac{24}{125}=\frac{192}{1000}=0.192$.
5. $\mathrm{LCM}=\frac{\text { First number } \times \text { Second number }}{\text { HCF }}$

$$
=\frac{96 \times 404}{4}=24 \times 404=9696 \text {. }
$$

6. (i) 660 (ii) 330

Hint: Going in opposite direction to the factor tree, we obtain $2 \times 165=330(i i)$ and $2 \times 330=660(i)$.
7. $\mathrm{HCF}=3 ; \mathrm{LCM}=420$

Hint: $12=2^{2} \times 3 ; 15=3 \times 5 ; 21=3 \times 7$.
8. (i) Terminating

Hint: $\frac{543}{250}=\frac{543}{2^{1} \times 5^{3}}$.
(ii) Non-terminating repeating

$$
\text { Hint: } \frac{9}{108}=\frac{1}{12}=\frac{1}{2^{2} \times 3^{1}} \text {. }
$$

9. Hint: Let $5-2 \sqrt{3}=\frac{a}{b} ; b \neq 0$

$$
\Rightarrow \quad \sqrt{3}=\frac{5 b-a}{2 b}
$$

As RHS of this equation is rational, but LHS is irrational so a contradiction.
10. Let a be any odd positive integer and $b=4$. By Euclid's lemma there exist integers q and r such that

$$
\begin{array}{rlrl}
& & a & =4 q+r, 0 \leq r<4 \\
\therefore & a & =4 q \text { or } 4 q+1 \text { or } 4 q+2 \text { or } 4 q+3 .
\end{array}
$$

Therefore, for a to be odd, we have to take $a=4 q+1$ or $4 q+3$.
11. The maximum capacity (in kg) of a bag will be the HCF of 490,588 and 882 . Let us find out the required HCF by prime factorisation method.

$$
\begin{aligned}
490 & =2 \times 5 \times 7^{2} \\
588 & =2^{2} \times 3 \times 7^{2} \\
882 & =2 \times 3^{2} \times 7^{2} \\
\therefore \quad H C F & =2 \times 7^{2}=98
\end{aligned}
$$

Thus, the maximum capacity of a bag is 98 kg .

WORKSHEET-2

1. Smallest composite number $=4$

Smallest prime number $=2$
HCF of 4 and $2=2$.
2. Going to opposite direction to the factor tree, we obtain
$3 \times 7=21$ (ii) and $2 \times 21=42(i)$.
3. $\sqrt{2}=1.414 \ldots$ and $\sqrt{3}=1.732 \ldots$

Therefore, we can take $1.5=\frac{3}{2}$
as $\sqrt{2}<\frac{3}{2}<\sqrt{3}$.
4. Required number $=\frac{23 \times 1449}{161}$

$$
=\frac{1449}{7}=207 .
$$

5. Hint: As $12576>4052$
$\therefore \quad 12576=4052 \times 3+420$
Further $\quad 4052=420 \times 9+272$
Further $\quad 420=272 \times 1+148$

Further

$$
272=148 \times 1+124
$$

Further $\quad 148=124 \times 1+24$
Further

$$
124=24 \times 5+4
$$

Further $24=4 \times 6+0$.
In the last equation, remainder is zero.
Hence, the required $\mathrm{HCF}=4$.
6. First given number is composite as

$$
\begin{aligned}
5 \times 3 \times 11+11 & =11(15+1)=11 \times 16 \\
& =11 \times 2 \times 8
\end{aligned}
$$

But second given number is prime as
$5 \times 7+7 \times 3+3=35+21+3=59$.
7. No. Prime factors of 6^{n} will be of type $2^{n} \times 3^{n}$. As it doesn't have 5 as a prime factor, so 6^{n} can't end with the digit 5 .
8. Hint: Let a be any positive integer
$\therefore \quad a=3 q$ or $3 q+1$ or $3 q+2$
$\therefore \quad a^{2}=9 q^{2}=3 m ; m=3 q^{2}$
or $a^{2}=(3 q+1)^{2}=3 m+1, m=q(3 q+2)$
or $a^{2}=(3 q+2)^{2}=3 m+1, m=3 q^{2}+4 q+1$.
9. We represent 6,72 and 120 in their prime factors.

$$
\begin{aligned}
6 & =2 \times 3 \\
72 & =2^{3} \times 3^{2} \\
120 & =2^{3} \times 3 \times 5 \\
\text { Now, HCF } & =2 \times 3=6 \\
\text { And LCM } & =2^{3} \times 3^{2} \times 5=360 .
\end{aligned}
$$

10. Hint: Let $\sqrt{2}-\sqrt{5}=x$, a rational number $\Rightarrow \quad \sqrt{2}=x+\sqrt{5}$
Squaring both sides, we get

$$
\begin{aligned}
2 & =x^{2}+5+2 x \sqrt{5} \\
\Rightarrow \quad \sqrt{5} & =\frac{-x^{2}-3}{2 x}
\end{aligned}
$$

RHS of this last equation is rational, but LHS is irrational which is a contradiction.
11. Number of members in group 1 (army group) $=308$
Number of members in group 2 (army band) $=24$
Greatest number which divides both 308, $24=\operatorname{HCF}(308,24)$
$\because 2 4 \longdiv { 3 0 8 (1 2 }$
\therefore Consider

$$
\begin{aligned}
308 & =24 \times 12+20 \\
24 & =20 \times 1+4 \\
20 & =4 \times 5+0
\end{aligned}
$$

\therefore HCF of $(308,24)=4$.

$$
\begin{aligned}
& \frac{24}{68} \\
& 48 \\
& \hline 20
\end{aligned}
$$

\therefore Maximum number of column in which the two group can march $=4$.

WORKSHEET-3

1. $\frac{43}{2^{4} \times 5^{3}}=\frac{43 \times 5}{(2 \times 5)^{4}}=\frac{215}{10^{4}}=0.0215$

Hence, the number terminates after four places of decimal.
2. $\mathrm{LCM}=\frac{45 \times 105}{15}$

LCM $=315$.
3. $128=2^{7} ; 240=2^{4} \times 3 \times 5$.

Now, $\operatorname{HCF}(128,240)=2^{4}=16$.
4. $1.033=\frac{1033}{1000}$
$\therefore \quad 1000=2^{3} \times 5^{3}$

2	1000
2	500
2	250
5	125
5	25
5	5
	1

5. No.

Hint:Prime factors of 15^{n} does not contain $2^{p} \times 5^{q}$ in factor, p, q being positive integers.
6. Rational number $=0.27$

Irrational number $=0.26010010001 \ldots$.
7. (i) $\frac{145}{625}=\frac{29}{125} \times \frac{8}{8}=\frac{232}{1000}=0.232$.
(ii) $\frac{7}{80} \times \frac{125}{125}=\frac{875}{10000}=0.0875$.
8. Let us assume, to the contrary that $\sqrt{2}$ is rational. We can take integers a and $b \neq 0$ such that
$\sqrt{3}=\frac{a}{b}$, where a and b are coprime.

$$
\begin{array}{ll}
\Rightarrow & 3 b^{2}=a^{2} \\
\Rightarrow & a^{2} \text { is divisible by } 3
\end{array}
$$

$$
\begin{equation*}
\Rightarrow \quad a \text { is divisible by } 3 \tag{i}
\end{equation*}
$$

We can write $a=3 c$ for some integer c

$$
\begin{array}{lcl}
\Rightarrow & a^{2}=9 c^{2} \\
\Rightarrow & 3 b^{2}=9 c^{2} & \left(\because a^{2}=3 b^{2}\right) \\
\Rightarrow & b^{2}=3 c^{2} & \\
\Rightarrow & b^{2} \text { is divisible by } 3 \\
\Rightarrow & b \text { is divisible by } 3 & \tag{ii}
\end{array}
$$

From (i) and (ii), we observe that a and b have atleast 3 as a common factor. But
this contradicts the fact that a and b are co-prime. This means that our assumption is not correct.

Hence, $\sqrt{3}$ is an irrational number.

$$
\text { 9. As: } \begin{array}{rlrl}
1032 & =408 \times 2+216 \\
408 & =216 \times 1+192 \\
216 & =192 \times 1+24 \\
& 192 & =24 \times 8+0 \tag{iv}\\
\Rightarrow \quad & H C F & =24
\end{array}
$$

\therefore From (iii)

$$
\begin{aligned}
\Rightarrow \quad 24 & =216-192 \\
& =216-[408-216] \quad \text { [Use }(i i)] \\
& =2 \times 216-408 \\
& =2[1032-2 \times 408]-408
\end{aligned}
$$

[Use (i)]

$$
\begin{aligned}
\Rightarrow & 24=1032 \times 2-5 \times 408 \\
\Rightarrow & m=2 .
\end{aligned}
$$

10. Hint: Let x be any positive integer.

Then it is of the form $3 q$ or $3 q+1$ or $3 q+2$.
If $\quad x=3 q$, then

$$
x^{3}=(3 q)^{3}=9 m ; m=3 q^{3}
$$

If $\quad x=3 q+1$, then

$$
\begin{aligned}
x^{3} & =(3 q+1)^{3} \\
& =9 m+1 ; m=q\left(3 q^{2}+3 q+1\right) .
\end{aligned}
$$

If $\quad x=3 q+2$, then
$x^{3}=(3 q+2)^{3}$
$=9 m+8 ; m=q\left(3 q^{2}+6 q+4\right)$.
11. The maximum number of columns must be the highest common factor (HCF) of 616 and 32. Let us find out the HCF by the method of Euclid's division lemma.
Since $616>32$, we apply division lemma to 616 and 32 , to get

$$
616=32 \times 19+8
$$

Since the remainder $8 \neq 0$, we apply the division lemma to 32 and 8 , to get

$$
32=8 \times 4+0
$$

The remainder has now become zero, so our procedure stops. Since the divisor at this stage is 8 , the HCF of 616 and 32 is 8 Hence, the maximum number of columns is 8 .

WORKSHEET-4

1. Non-terminating repeating.

Hint: Denominator is not in the exact form of $2^{m} \times 5^{n}$, where m, n are non-negative integers.
2. $\sqrt{\frac{49}{147}}=\frac{1}{\sqrt{3}}=\frac{\sqrt{3}}{3}$, which is therefore an irrational number.
3. $(\sqrt{6}-\sqrt{5})(\sqrt{6}+\sqrt{5})=(\sqrt{6})^{2}-(\sqrt{5})^{2}$ $=6-5=1=$ Rational number.
4. Terminating decimal form as denominator 4 of $\frac{107}{4}$ is of the form $2^{n} \times 5^{m}$.
Here $n=2, m=0$
5. (i) 1001 (ii) 91

Hint: $7 \times 13=(i i)$ and $(i i) \times 11=(i)$.
6 . Let us represent each of the numbers 30 , 72 and 432 as a product of primes.
$30=2 \times 3 \times 5$
$72=2^{3} \times 3^{2}$
$432=2^{4} \times 3^{3}$
Now, HCF $=2 \times 3=6$
and LCM $=2^{4} \times 3^{3} \times 5=2160$.
7. Here, $396>82$.
$\therefore \quad 396=82 \times 4+68$
Further $82=68 \times 1+14$
Further $68=14 \times 4+12$
Further $14=12 \times 1+2$
Further $12=2 \times 6+0$
In the last equation, the remainder is zero and the divisor is 2 .
Hence, the required $\mathrm{HCF}=2$.
8. Hint: Let $3+2 \sqrt{5}=\frac{a}{b} ; b \neq 0$
$\Rightarrow \quad \frac{a-3 b}{2 b}=\sqrt{5}=$ Rational
Which is a contradiction as $\sqrt{5}$ is an irrational number.
9. As

$$
\begin{aligned}
4 & =2^{2} \\
12 & =2^{2} \times 3 \\
20 & =2^{2} \times 5 \\
20 & =2^{2} \times 3 \times 5 \\
& =4 \times 3 \times 5 \\
& =60
\end{aligned}
$$

$$
\therefore \quad \operatorname{LCM}(4,12,20)=2^{2} \times 3 \times 5
$$

$\therefore 60$ is least number which is exactly divisible by $4,12,20$.
Hence, all the alarm clocks will ring together after 60 min .
10. The required number of students will be the highest common factor (HCF) of 312, 260 and 156. Let us find out the HCF by the method of prime factorisation.

$$
\begin{aligned}
312 & =2^{3} \times 3 \times 13 \\
260 & =2^{2} \times 5 \times 13 \\
156 & =2^{2} \times 3 \times 13 \\
\therefore \quad H C F & =2^{2} \times 13=52
\end{aligned}
$$

Number of buses required

$$
\begin{aligned}
& =\frac{\text { Total number of students }}{\text { Number of students in one bus }} \\
& =\frac{312+260+156}{52}=14
\end{aligned}
$$

Thus, the maximum number of students in a bus and number of buses required are 52 and 14 respectively.
11. Hint: Let $x=$ any positive integer $x=5 m, 5 m+1,5 m+2,5 m+3$ or $5 m+4$ Now take square of all these form.

WORKSHEET-5

1. Let the quotient is m when $n^{2}-1$ is divided by 8 .

$$
\begin{array}{rlrl}
\therefore & & n^{2}-1 & =8 \times m \\
\Rightarrow & & n^{2}-1 & =0,8,16,24,32, \ldots . \\
\Rightarrow & & n^{2} & =1,9,17,25,33, \ldots \\
& \Rightarrow & & n= \\
& \pm & & \pm 1, \pm 3, \pm \sqrt{17} \pm 5, \pm \sqrt{33}, \ldots \\
& & n & =A n \text { odd integer is the right } \\
& & \text { Answer. }
\end{array}
$$

2.2

Hint: $\operatorname{HCF}(65,117)=13$
Now, $\quad 65 m-117=13$.
$\therefore \quad m=2$ will satisfy this equation.
3. Hint: LCM of $18,24,30,42=2520$
\therefore Required number $=2520+1=2521$.
4. Prime factors of numbers 1 to 10 are: $1=1 ; 2=1 \times 2 ; 3=1 \times 3 ; 4=1 \times 2^{2}$
$5=1 \times 5 ; 6=1 \times 2 \times 3 ; 7=1 \times 7$;
$8=1 \times 2^{3} ; 9=1 \times 3^{2} ; 10=1 \times 2 \times 5$
Now,
LCM $=1 \times 2^{3} \times 3^{2} \times 5 \times 7$
$=8 \times 9 \times 5 \times 7=2520$ is required number.
5. 2.

Hint: $\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}=2 x-\sqrt{15}$
$\Rightarrow \quad 4-\sqrt{15}=2 x-\sqrt{15}$
$\Rightarrow x=2$, which is a rational number.
6. Hint: Any odd positive integer will be type of $4 q+1$ or $4 q+3$

$$
\begin{aligned}
\therefore \quad(4 q+1)^{2} & =16 q^{2}+8 q+1 \\
& =8\left(2 q^{2}+q\right)+1 \\
& =8 n+1
\end{aligned}
$$

Also, $\quad(4 q+3)^{2}=16 q^{2}+24 q+9$

$$
\begin{aligned}
& =8\left(2 q^{2}+3 q+1\right)+1 \\
& =8 n+1 .
\end{aligned}
$$

7.35 cm

Hint: Find HCF.
8. Hint: Let $\sqrt{5}-3 \sqrt{2}=\frac{a}{b}$
where a, b are integers and $b \neq 0$
Squaring on both sides,

$$
\begin{aligned}
5+18-6 \sqrt{10} & =\frac{a^{2}}{b^{2}} \\
\Rightarrow \quad 23-\frac{a^{2}}{b^{2}} & =6 \sqrt{10} \\
\Rightarrow \quad \frac{23 b^{2}-a^{2}}{6 b^{2}} & =\sqrt{10} \ldots \text { a contradiction. }
\end{aligned}
$$

9. (i) Terminating (ii) Terminating.
10. The required number of burfis will be the highest common factor of 420 and 130.
Let us find out the HCF using Euclid's division lemma.
It is clear that $420>130$. We apply Division lemma to 420 and 130 , to get

$$
420=130 \times 3+30
$$

Since the remainder $30 \neq 0$, so we apply
Division lemma to 130 and 30 , to get $130=30 \times 4+10$
Again the remainder $10 \neq 0$, so we apply

Division lemma to 30 and 10, to get

$$
30=10 \times 3+0
$$

Now, the remainder is zero. So the HCF of 420 and 130 is the divisor at the last stage that is 10 .
Hence, the required number of burfis is 10 .
11. If possible let a is such an integer for which $\sqrt{a+1}+\sqrt{a-1}$ is rational $\therefore \sqrt{a+1}+\sqrt{a-1}=\frac{p}{q} ; p, q$ are integers and $q \neq 0$
$\Rightarrow \quad \frac{q}{p}=\frac{1}{\sqrt{a+1}+\sqrt{a-1}}$

$$
=\frac{\sqrt{a+1}-\sqrt{a-1}}{(\sqrt{a+1}+\sqrt{a-1})(\sqrt{a+1}-\sqrt{a-1})}
$$

$$
=\frac{\sqrt{a+1}-\sqrt{a-1}}{(a+1)-(a-1)}
$$

$$
\begin{equation*}
=\frac{\sqrt{a+1}-\sqrt{a-1}}{2} \tag{ii}
\end{equation*}
$$

$\Rightarrow \frac{2 q}{p}=\sqrt{a+1}-\sqrt{a-1}$
Adding (i) and $(i i) \Rightarrow \frac{p}{q}+\frac{2 q}{p}=2 \sqrt{a+1}$
also (i) $-(i i) \Rightarrow \frac{p}{q}-\frac{2 q}{p}=2 \sqrt{a-1}$
$\Rightarrow \sqrt{a+1}=\frac{p^{2}+2 q^{2}}{2 q p}=$ a rational number
and $\sqrt{a-1}=\frac{p^{2}-2 q^{2}}{2 q p}=$ a rational number
$\Rightarrow \sqrt{a+1}$ and $\sqrt{a-1}$ are both rational number
$\Rightarrow a+1$ and $a-1$ are perfect square of positive integers.
This is not possible as any two perfect squares differs at least by 3 .
Hence our assumption was wrong.
\Rightarrow there doesn't exist any positive integer a for which $\sqrt{a+1}+\sqrt{a-1}$ is rational.

WORKSHEET-6

1. $\mathrm{HCF} \times \mathrm{LCM}=x \times 18$

$$
\begin{array}{llrl}
\Rightarrow & 36 \times 2 & =18 x \\
\Rightarrow & 72 & =18 x \\
\Rightarrow & x & =\frac{72}{18} \\
\therefore & x & =4 .
\end{array}
$$

2. As p and $p+1$ are two consecutive natural numbers, $\mathrm{HCF}=1$ and
$\mathrm{LCM}=p(p+1)$.
3. Hint: The given number is $\frac{51}{1500}$ or $\frac{17}{500}$
\therefore Denominator $=500=2^{2} \times 5^{3}$
Clearly, the denominator is exactly in the form $2^{m} \times 5^{n}$, where m and n are nonnegative integers; so the given number has a terminating decimal expansion.
4. 1800

$$
\text { Hint: } \because 8=2^{3} ; 9=3^{2} ; 25=5^{2}
$$

$\therefore \quad \operatorname{HCF}(8,9,25)=1$
$\operatorname{LCM}(8,9,25)=1800$.
5. -19

Hint: $\quad \operatorname{HCF}(210,55)=5$
$\therefore \quad 210 \times 5+55 y=5$
$\Rightarrow \quad 55 y=5-1050$
$\Rightarrow \quad y=\frac{-1045}{55}=-19$.
6. Irrational

$$
\begin{array}{ll}
\text { Hint: } & \frac{2-\sqrt{3}}{2+\sqrt{3}}=\frac{x}{\sqrt{3}} \\
\Rightarrow & 7-4 \sqrt{3}=\frac{x}{\sqrt{3}} \\
\Rightarrow & 7 \sqrt{3}-12=x=\text { Irrational. }
\end{array}
$$

7. Rational Number $=0.55$

Irrational number $=0.5477477747 \ldots$.
8.15

Hint: $\operatorname{HCF}(1380,1455,1620)=15$.
9. (i) 0.052. (ii) 5.8352.
10. We know that any positive integer is either of the form $3 q, 3 q+1$ or $3 q+2$ for some integer q.

Now, three cases arise.
Case I. When $p=3 q$,
$p+2=3 q+2$ and $p+4=3 q+4$
Here, $\quad p=3 q$ is exactly divisible by 3 $p+2=3 q+2$ leaves 2 as remainder when it is divided by 3

$$
p+4=3 q+4 \text { or } 3(q+1)+1 \text { leaves }
$$

1 as remainder when it is divided by 3 .
Case II. When $p=3 q+1$,

$$
p+2=3 q+3 \text { and } p+4=3 q+5
$$

Here, $\quad p=3 q+1$ leaves 1 as remainder when it is divided by 3

$$
\begin{aligned}
p+2= & 3 q+3 \text { or } 3(q+1) \text { is exactly } \\
& \text { divisible by } 3 \\
p+4= & 3 q+5 \text { or } 3(q+1)+2 \text { leaves } 2 \\
& \text { as remainder when it is } \\
& \text { divided by } 3
\end{aligned}
$$

Case III. When $p=3 q+2, p+2=3 q+4$ and $p+4=3 q+6$
Here, $p=3 q+2$ leaves 2 as remainder when it is divided by 3 .
$p+2=3 q+4$ or $3(q+1)+1$ leaves
1 as remainder when it is divided by 3
$p+4=3 q+6$ or $3(q+2)$ is exactly divisible by 3 .
Hence, in all the cases, one and only one number out of $p, p+2$ and $p+4$ is divisible by 3 , where p is any positive integer.

OR

Any positive odd integer is type of $2 q+1$ where q is a whole number.
$\therefore \quad(2 q+1)^{2}=4 q^{2}+4 q+1=4 q(q+1)+1$
Now, $q(q+1)$ is either 0 or even
So, it is $2 m$, where m is some number.
\therefore From $(i) \Rightarrow(2 q+1)^{2}=8 m+1$.
11. Since, height of each stack is the same, therefore, the number of books in each stack is equal to the HCF of 96,240 and 336.
Let us find their HCF

$$
\begin{aligned}
96 & =2^{4} \times 2 \times 3 \\
240 & =2^{4} \times 3 \times 5 \\
336 & =2^{4} \times 3 \times 7 \\
\text { So, } \quad H C F & =2^{4} \times 3=48 .
\end{aligned}
$$

Now, number of stacks of English books

$$
=\frac{96}{48}=2
$$

Number of stacks of Hindi books

$$
=\frac{240}{48}=5
$$

Number of stacks of Mathematics books

$$
=\frac{336}{48}=7 .
$$

WORKSHEET-7

1. $\mathrm{HCF} \times \mathrm{LCM}=$ Product of the two numbers.

$$
\begin{array}{ll}
\Rightarrow & 9 \times \mathrm{LCM}=306 \times 657 \\
\Rightarrow & \mathrm{LCM}=\frac{306 \times 657}{9}=22338
\end{array}
$$

2. As given number can be written as 2525 which is product of prime numbers: 5×5 $\times 101$. Hence it is a composite number.
3. $\mathrm{HCF} \times \mathrm{LCM}=$ Product of the two numbers $\Rightarrow 40 \times 252 \times p=2520 \times 6600$

$$
\Rightarrow \quad p=\frac{2520 \times 6600}{40 \times 252}=1650
$$

4. No; because HCF must divide LCM and here HCF $=18$ which doesn't divide LCM which is 380 .
5. As n is odd integer
$\Rightarrow 2 n$ is even integer
also $2 n+1$ is odd integer
and $4 n+2$ is even integer
$\therefore(-1)^{n}+(-1)^{2 n}+(-1)^{2 n+1}+(-1)^{4 n+2}$

$$
=-1+1-1+1=0
$$

because $(-1)^{\text {odd integer }}=-1$
and $\quad(-1)^{\text {even integer }}=1$.
6. The required number would be the HCF of $967-7=960$ and $2060-12=2048$.
Let us find the HCF of 960 and 2048 by using Euclid's algorithm.
Since $2048>960$

$$
\therefore \quad \begin{aligned}
\therefore 2048 & =960 \times 2+128 \\
960 & =128 \times 7+64 \\
128 & =64 \times 2+0
\end{aligned}
$$

Since the remainder becomes zero and the divisor at this stage is 64 , the HCF of 960 and 2048 is 64 .
Hence, the required number is 64 .
7.

2	456
2	228
2	114
3	57
19	19
	1

2	360
2	180
2	90
3	45
3	15
5	5
	1

Clearly,

$$
456=2^{3} \times 3 \times 19
$$

and

$$
360=2^{3} \times 3^{2} \times 5
$$

$\therefore \mathrm{HCF}$

$$
=2^{3} \times 3=24
$$

Hence, $\quad \mathrm{LCM}=\frac{456 \times 360}{24}=6840$.
8. (i) Time taken by Ram to complete one cycle $=180$ seconds.
Time taken by Shyam to complete one cycle $=150$ seconds.
\therefore Consider LCM of 180 and 150 .

$$
\begin{array}{ll}
\therefore & 180=2^{2} \times 5 \times 3^{2} \\
150=2 \times 5^{2} \times 3
\end{array}
$$

$\therefore \quad$ LCM of 180 and $150=2^{2} \times 5^{2} \times 3^{2}$

$$
\begin{aligned}
& =4 \times 25 \times 9 \\
& =900 \text { seconds } \\
& =\frac{900}{60}=15 \text { minutes }
\end{aligned}
$$

\therefore They both will again meet after 15 minutes.
(ii) Since they started at 6 a.m. and they will be meeting again after 15 minutes.
\therefore The time will be $6: 15$ a.m.
(iii) L.C.M. of real numbers.
(iv) Since Ram and Shyam go for morning walk daily. So, it depicts their discipline and health consciousness.
9. Let a be any odd positive integer. Then, it is of the form $6 p+1,6 p+3$ or $6 p+5$.
Here, three cases arise.
Case I: When $a=6 p+1$,

$$
\begin{aligned}
\therefore \quad a^{2} & =36 p^{2}+12 p+1 \\
& =6 p(6 p+2)+1=6 q+1,
\end{aligned}
$$

where $q=p(6 p+2)$.
Case II: When $a=6 p+3$,

$$
\therefore \quad a^{2}=36 p^{2}+36 p+9
$$

$$
\begin{aligned}
& =36 p^{2}+36 p+6+3 \\
& =6\left(6 p^{2}+6 p+1\right)+3 \\
& =6 q+3,
\end{aligned}
$$

where $q=6 p^{2}+6 p+1$.
Case III: When $a=6 p+5$,

$$
\begin{aligned}
\therefore \quad a^{2} & =36 p^{2}+60 p+25 \\
& =36 p^{2}+60 p+24+1 \\
& =6\left(6 p^{2}+10 p+4\right)+1 \\
& =6 q+1,
\end{aligned}
$$

where $q=6 p^{2}+10 p+4$.
Hence, a is of the form $6 q+1$ or $6 q+3$.

CHAPTER TEST

1. We know, $\mathrm{HCF} \times \mathrm{LCM}=a \times b$

$$
15 \times \mathrm{LCM}=1800
$$

$$
\operatorname{LCM}=\frac{1800}{15}=120
$$

2. Prime factorisation of 720

$$
\begin{aligned}
& =2 \times 2 \times 2 \times 2 \times 3 \times 3 \times 5 \\
& =2^{4} \times 3^{2} \times 5
\end{aligned}
$$

3. $\because \mathrm{LCM}=\frac{306 \times 1314}{18}=22338$.
4. Yes.

$$
\left.\begin{array}{rl}
2 \times 3 \times 5 \times & 13
\end{array}\right) \times 17+13.13 \times(2 \times 3 \times 5 \times 17+1) .
$$

5. $(\sqrt{2}-\sqrt{9})^{2}=2-2 \sqrt{18}+9$
$=11-2 \sqrt{18}$
$=$ irrational.
6. No.

Hint: Prime factors of 9^{n} will be type of $3^{2 n}$, i.e., $3 \times 3 \times \ldots \times 3$

Even no. of times.
7. $\because \quad 0.56125=\frac{56125}{100000}=\frac{449}{800}$

$$
\begin{aligned}
& \quad=\frac{449}{32 \times 25}=\frac{449}{2^{5} \times 5^{2}} \\
\because & 2^{n} \times 5^{m}
\end{aligned}=2^{5} \times 5^{2} .
$$

8. $\quad 120=2^{3} \times 3 \times 5$

$$
105=3 \times 5 \times 7
$$

$$
150=2 \times 3 \times 5^{2}
$$

$$
\therefore \quad \mathrm{HCF}=3 \times 5=15
$$

And $L C M=2^{3} \times 3 \times 5^{2} \times 7$

$$
\begin{aligned}
& =8 \times 3 \times 25 \times 7 \\
& =4200 .
\end{aligned}
$$

9. Hint:

Let $\quad \sqrt{2}-3 \sqrt{3}=x$, where x is rational.

$$
\begin{array}{lr}
\Rightarrow & (\sqrt{2}-3 \sqrt{3})^{2}=x^{2} \\
\Rightarrow & 2+27-6 \sqrt{6}=x^{2} \\
\Rightarrow & 29-x^{2}=6 \sqrt{6} \\
\Rightarrow & \frac{29-x^{2}}{6}=\sqrt{6} .
\end{array}
$$

Since 6 is not a perfect square. So $\sqrt{6}$ is always irrational.
\therefore It's a contradiction.
10. We know that any positive integer is of the form $3 q$ or $3 q+1$ or $3 q+2$.
Case I: $\quad n=3 q$
$\Rightarrow \quad n^{3}=(3 q)^{3}=9 \times 3 q^{3}=9 m$
$\Rightarrow \quad n^{3}+1=9 m+1$, where $m=3 q^{3}$.
Case II: $\quad n=3 q+1$

$$
\begin{aligned}
& \Rightarrow \quad n^{3}=(3 q+1)^{3} \\
& =27 q^{3}+1+27 q^{2}+9 q \\
& =9 q\left(3 q^{2}+3 q+1\right)+1 \\
& =9 m+1 \\
& \Rightarrow \quad n^{3}+1=9 m+2 \text {, where } \\
& m=q\left(3 q^{2}+3 q+1\right) . \\
& \text { Case III: } \quad n=3 q+2 \\
& \begin{aligned}
\Rightarrow \quad n^{3} & =(3 q+2)^{3} \\
& =27 q^{3}+8+54 q^{2}+36 q \\
n^{3}+1 & =27 q^{3}+54 q^{2}+36 q+9 \\
& =9\left(3 q^{3}+6 q^{2}+4 q+1\right) \\
& =9 m,
\end{aligned}
\end{aligned}
$$

where

$$
m=3 q^{3}+6 q^{2}+4 q+1
$$

Hence, $n^{3}+1$ can be expressed in the form $9 m, 9 m+1$ or $9 m+2$, for some integer m.
11. (i) We will find HCF of 96 and 112 by using Euclid's lemma:
$\therefore \quad 112=96 \times 1+16$
and

$$
96=16 \times 6+0
$$

\Rightarrow the last divisor $=16$
$\therefore \quad \mathrm{HCF}=16$
\therefore The minimum number of boxes required for apples $=\frac{96}{16}=6$ and the minimum number of boxes required for oranges $=\frac{112}{16}=7$
\therefore Total minimum number of boxes required $=7+6=13$.
(ii) Concept used is HCF of two real numbers using Euclid's lemma.
(iii) By distributing fruits in orphanage his kindness and concern towards the needful has been reflected.

WORKSHEET-9

1. $\because \mathrm{D}=b^{2}-4 a c$

$$
\begin{aligned}
& =(-2)^{2}-4(-1)(3) \\
& =4+12=16>0
\end{aligned}
$$

$\Rightarrow f(x)$ will have two distinct zeroes.
2. $\alpha+\beta=-\frac{7}{2}$

$$
\alpha \beta=\frac{5}{2}
$$

$$
\Rightarrow \alpha+\beta+\alpha \beta=-\frac{7}{2}+\frac{5}{2}=\frac{-2}{2}=-1 .
$$

3. -1

Hint: $\frac{1}{\alpha}+\frac{1}{\beta}=\frac{\alpha+\beta}{\alpha \beta}$.
4. Sum of zeroes of required polynomial (s)

$$
\begin{aligned}
& =\frac{1}{\alpha}+\frac{1}{\beta}=\frac{\beta+\alpha}{\alpha \beta} \\
& =\frac{3+2}{3 \cdot 2}=\frac{5}{6} .
\end{aligned}
$$

Product of zeroes $(P)=\frac{1}{\alpha} \cdot \frac{1}{\beta}$

$$
=\frac{1}{(3)(2)}=\frac{1}{6}
$$

\therefore Required polynomial is

$$
\begin{aligned}
\mathrm{P}(x) & =k \cdot\left[x^{2}-(\mathrm{S}) x+\mathrm{P}\right] \\
& =k\left[x^{2}-\frac{5}{6} x+\frac{1}{6}\right]
\end{aligned}
$$

where k is any non-zero real number
5. Sum of zeroes $(S)=-\frac{2}{\sqrt{3}}+\frac{\sqrt{3}}{4}$

$$
=\frac{3-8}{4 \sqrt{3}}=-\frac{5}{4 \sqrt{3}}
$$

Product of zeroes $(P)=-\frac{2}{\sqrt{3}} \times \frac{\sqrt{3}}{4}=-\frac{1}{2}$

Now, required polynomial will be
$x^{2}-\mathrm{S} x+\mathrm{P}$, i.e., $x^{2}+\frac{5}{4 \sqrt{3}} x-\frac{1}{2}$
or $4 \sqrt{3} x^{2}+5 x-2 \sqrt{3}$.
6. Let $f(x)=2 x^{2}+2 a x+5 x+10$

If $x+a$ is a factor of $f(x)$, then $f(-a)=0$
Therefore, $2 a^{2}-2 a^{2}-5 a+10=0$
$\Rightarrow \quad a=2$.
7. $x^{3}-4 x^{2}+x+6$

Hint: If the zeroes are α, β and γ of a cubical polynomial, then the polynomial will be
$(x-\alpha)(x-\beta)(x-\gamma)$
$=(x-3)(x-2)(x+1)=x^{3}-4 x^{2}+x+6$.
8. Solving $\alpha+\beta=3$ and $\alpha-\beta=-1$,
we get $\alpha=1, \beta=2$
\therefore Polynomial is $x^{2}-(\alpha+\beta) x+\alpha \beta$
$\Rightarrow \quad p(x)=x^{2}-3 x+2$.
9. According to the division algorithm,

$$
p(x)=g(x) \times q(x)+r(x)
$$

$\Rightarrow x^{3}-3 x^{2}+x+2=g(x) \times(x-2)$

$$
+(-2 x+4)
$$

(As given in question)

$$
\Rightarrow \quad g(x)=\frac{x^{3}-3 x^{2}+3 x-2}{x-2}
$$

To find $g(x)$, we proceed as given below.

$$
\begin{array}{r}
\frac{x^{2}-x+1}{x-2} \begin{array}{r}
x^{3}-3 x^{2}+3 x-2 \\
\frac{-x^{3}-2 x^{2}}{-x^{2}+3 x-2} \\
\frac{-x^{2}+2 x}{-2} \\
\frac{x-2}{} \\
\frac{-x+2}{0}
\end{array} \\
\hline
\end{array}
$$

Thus, $g(x)=x^{2}-x+1$.
10. $-\frac{1}{3} ; \frac{3}{2}$

$$
3 x+1=0 \text { gives } x=-\frac{1}{3}
$$

$$
\therefore \quad \alpha+\beta=\frac{-1}{3}+\frac{3}{2}=\frac{7}{6}=\frac{-b}{a}
$$

$$
\therefore \quad \alpha \cdot \beta=\frac{-1}{3} \cdot \frac{3}{2}=\frac{-1}{2}=\frac{c}{a} .
$$

11. Let $p(x)=x^{4}+x^{3}-34 x^{2}-4 x+120$

Given zeroes of $p(x)$ are 2 and -2
$\therefore(x-2)(x+2)=x^{4}-4$ is a factor of $p(x)$.
We divide $p(x)$ by $x^{2}-4$,

$$
\begin{array}{cc}
& \begin{array}{c}
x^{2}+x-30 \\
x^{2}-4 \\
x^{4}+x^{3}-34 x^{2}-4 x+120 \\
x^{4} \quad-4 x^{2}
\end{array} \\
\frac{-\quad x^{3}-30 x^{2}-4 x+120}{} \\
& \frac{x^{3} \quad-4 x}{-30 x^{2}+120} \\
& \frac{-30 x^{2}+120}{0} \\
\therefore \quad & p(x)=\left(x^{2}-4\right)\left(x^{2}+x-30\right)
\end{array}
$$

\therefore Other zeroes of $p(x)$ are given by

$$
\begin{array}{rlrl}
& & x^{2}+x-30 & =0 \\
\Rightarrow & x^{2}+6 x-5 x-30 & =0 \\
\Rightarrow & x(x+6)-5(x+6) & =0 \\
\Rightarrow & & (x-5)(x+6) & =0 \\
& & x & =5,-6
\end{array}
$$

Hence, all the zeroes are $2,-2,5$ and -6 .

WORKSHEET - 10

1. Required quadratic polynomial
$=x^{2}-($ sum of zeroes $) x+$ product of zeroes $=x^{2}-2 \sqrt{3} x-5 \sqrt{3}$.

$$
\begin{aligned}
& \text { Hint: } 6 x^{2}-7 x-3=6 x^{2}-9 x+2 x-3 \\
& =3 x(2 x-3)+1(2 x-3) \\
& =(2 x-3)(3 x+1) \\
& 2 x-3=0 \text { gives } \\
& \therefore \quad x=\frac{3}{2}
\end{aligned}
$$

2. $f(x)=3 x^{2}-3+2 x-5$

$$
=3 x^{2}+2 x-8
$$

$\therefore \quad$ Sum of zeroes $=-\frac{b}{a}=\frac{-2}{3}$
Product of zeroes $=\frac{c}{a}=\frac{-8}{3}$.
3. Let $\alpha=5$ and $\beta=-5$, then the quadratic polynomial will be $x^{2}-(\alpha+\beta) x+\alpha \beta$ or $x^{2}-25$.
4. $p(x)=4 x^{2}-4 x+1$

$$
\begin{aligned}
& =4 x^{2}-2 x-2 x+1 \\
& =2 x(2 x-1)-1(2 x-1) \\
& =(2 x-1)(2 x-1)
\end{aligned}
$$

For zeroes, $2 x-1=0$ and $2 x-1=0$

$$
\begin{array}{ll}
\therefore & x=\frac{1}{2}, \frac{1}{2} .
\end{array}
$$

Hint: $(2)^{3}-3(2)^{2}+3(2)-p=0$

$$
\begin{array}{lrl}
\Rightarrow & 8-12+6-p & =0 \\
\Rightarrow & 2-p=0 \\
\therefore & p=2 .
\end{array}
$$

6. As -4 is a zero of polynomial.

$$
\begin{aligned}
\mathrm{P}(x) & =x^{2}-x-(2 k+2) \\
\therefore \mathrm{P}(-4)=0 & \Rightarrow(-4)^{2}-(-4)-(2 k+2)=0 \\
& \Rightarrow 16+4-2 k-2=0 \\
& \Rightarrow 18-2 k=0 \\
& \Rightarrow k=9 .
\end{aligned}
$$

7. Let the third zero be α, then sum of the zeroes $=-\frac{\text { coefficient of } x^{2}}{\text { coefficient of } x^{3}}$
$\begin{array}{crl}\Rightarrow & 2+3+\alpha & =-\frac{-6}{1} \\ \Rightarrow & \alpha & =1\end{array}$
Hence, the third zero is 1 .
8. Let us divide $6 x^{4}+8 x^{3}+17 x^{2}+21 x+7$ by $3 x^{2}+4 x+1$.

$$
\begin{array}{r}
3 x ^ { 2 } + 4 x + 1 \longdiv { 6 x ^ { 4 } + 8 x ^ { 3 } + 1 7 x ^ { 2 } + 2 1 x + 7 } \\
-\quad 6 x^{4}+8 x^{3}+2 x^{2} \\
\frac{15 x^{2}+21 x+7}{} \\
-\quad 15 x^{2}+20 x+5 \\
-\quad x+2
\end{array}
$$

Clearly, the remainder is $x+2$.
Now, $a x+b=x+2$
Comparing the coefficients of like powers of x both the sides, we obtain

$$
a=1, b=2 \text {. }
$$

9. Let $\alpha . \beta$ be zeroes of $(a+2) x^{2}+6 x+5 a$

Also Let $\beta=\frac{1}{\alpha}$.
Now product of zeroes $=\alpha \cdot \beta=\frac{5 a}{a+2}$

$$
\begin{aligned}
\Rightarrow \quad \alpha\left(\frac{1}{\alpha}\right) & =\frac{5 a}{a+2} \\
\Rightarrow \quad 1=\frac{5 a}{a+2} & \Rightarrow a+2=5 a \\
& \Rightarrow 2=4 a \\
& \Rightarrow a=\frac{1}{2} .
\end{aligned}
$$

10. $\sqrt{3}$ and 1

Hint: $x^{2}-\sqrt{3} x-x+\sqrt{3}=(x-\sqrt{3})(x-1)$
For zeroes, $x-\sqrt{3}=0$ and $x-1=0$

$$
\Rightarrow \quad x=\sqrt{3}, 1
$$

Now, sum of zeroes $=\sqrt{3}+1$

$$
=-\frac{\text { Coefficient of } x}{\text { Coefficient of } x^{2}}
$$

And product of zeroes $=\sqrt{3}$

$$
=\frac{\text { Constant term }}{\text { Coefficient of } x^{2}} \text {. }
$$

11. (i) To find the number of sweets which was distributed among the slum children, we divide the total number of sweets by number of children Mr. Vinod has. Remainder thus obtained is the required number of sweets.

$$
\begin{array}{r}
x^{2}-4 x+3 \begin{array}{r}
x^{2}+6 x+8 \\
\begin{array}{l}
x^{4}+2 x^{3}-13 x^{2}-12 x+21 \\
x^{4}-4 x^{3}+3 x^{2}
\end{array} \\
\frac{6 x^{3}-16 x^{2}-12 x+21}{} \\
\frac{-x^{3}-24 x^{2}+18 x}{+} \\
8 x^{2}-30 x+21 \\
\frac{-8 x^{2}-32 x+24}{+}+2 x-3
\end{array}
\end{array}
$$

Hence, the number of sweets which was distributed amoung the slum children was $2 x-3$.
(ii) Helping one another, fair division.

WORKSHEET-11

1. Sum of zeroes $=\frac{-(-5)}{\left(\frac{1}{3}\right)}=15$

$$
\text { Product of zeroes }=\frac{\frac{3}{2}}{\frac{1}{3}}=\frac{9}{2} \text {. }
$$

2. Let the zeroes be α, β, γ. Then $\alpha \beta \gamma=-\frac{c}{1}$

If $\gamma=-1$, then $\alpha \beta=c$
Further, $(-1)^{3}+a(-1)^{2}+b(-1)+\mathrm{c}=0$
$\Rightarrow-1+a-b+c=0$
$\Rightarrow c=b-a+1$
From equations (i) and (ii), we have

$$
\alpha \beta=b-a+1 .
$$

3. Sum of zeroes $=6$

$$
\begin{array}{ll}
\Rightarrow & 6=-\frac{-3 k}{1} \\
\therefore & k=\frac{6}{3}=2 .
\end{array}
$$

4. Let one zero be α, then the other one will be $\frac{1}{\alpha}$.
So,
$\alpha \cdot \frac{1}{\alpha}=\frac{4 a}{a^{2}+4}$
$a^{2}-4 a+4=0$
$\Rightarrow \quad(a-2)^{2}=0$
$\Rightarrow \quad a=2$.
5. Given polynomial is:

$$
\begin{array}{rlrl}
& & f(x) & =x^{2}-p x-2 p-c \\
& \therefore \quad \alpha+\beta & =p \\
\text { and } & \alpha . \beta & =-2 p-c \\
\therefore(\alpha+2)(\beta+2) & =\alpha \beta+2(\alpha+\beta)+4 \\
& & =-2 p-c+2 p+4 \\
& & =(4-c) .
\end{array}
$$

6. $\lambda=6$

Hint: $(\alpha+\beta)^{2}=(\alpha-\beta)^{2}+4 \alpha \beta$.
7. $x=-1$ or 3 ; $f(x)=x^{2}-2 x-3$

Hint:

$$
x=-1 \text { or } 3,
$$

\therefore Sum of zeroes $=2$
Product of zeroes $=-3$

$$
\begin{aligned}
\therefore \quad p(x) & =x^{2}-(\alpha+\beta) x+\alpha \beta \\
& =x^{2}-2 x-3 .
\end{aligned}
$$

8. $x^{2}-x-\frac{47}{4}$

Hint: $f(x)=\left\{x^{2}-\right.$ (sum of zeroes) $x+($ product of zeroes) $\}$
9. Let

$$
\mathrm{P}(x)=k x^{2}+x-6
$$

$\therefore \quad \alpha, \beta$ be its zeroes

$$
\begin{array}{lr}
\therefore & \alpha+\beta=-\frac{1}{k} ; \alpha \beta=\frac{-6}{k} \\
\therefore & \alpha^{2}+\beta^{2}=\frac{25}{4} \tag{Given}\\
\Rightarrow & (\alpha+\beta)^{2}-2 \alpha \beta=\frac{25}{4} \\
\Rightarrow & \left(\frac{-1}{k}\right)^{2}-2\left(\frac{-6}{k}\right)=\frac{25}{4} \\
\Rightarrow & \frac{1}{k^{2}}+\frac{12}{k}=\frac{25}{4} \\
\Rightarrow & \frac{1+12 k}{k^{2}}=\frac{25}{4} \\
\Rightarrow \quad 4+48 k=25 k^{2} \\
\Rightarrow & 25 k^{2}-48 k-4=0 \\
\Rightarrow & (k-2)(25 k+2)=0 \\
\Rightarrow & k=2 \text { or } k=\frac{-2}{25} .
\end{array}
$$

10. $g(x)=x^{2}+2 x+1$

Hint: $\quad p(x)=g(x) \times q(x)+r(x)$
$\Rightarrow \quad g(x)=\frac{p(x)-r(x)}{q(x)}$
where, $p(x)=3 x^{3}+x^{2}+2 x+5$

$$
q(x)=3 x-5
$$

and $\quad r(x)=9 x+10$.
11. Since $x=\sqrt{\frac{5}{3}}$ and $x=-\sqrt{\frac{5}{3}}$ are zeroes of $p(x)=3 x^{4}+6 x^{3}-2 x^{2}-10 x-5$, so $p(x)$ is divisible by $\left(x-\sqrt{\frac{5}{3}}\right)\left(x+\sqrt{\frac{5}{3}}\right)$,i.e., $x^{2}-\frac{5}{3}$.

$$
\begin{aligned}
& x ^ { 2 } - \frac { 5 } { 3 } \longdiv { 3 x ^ { 2 } + 6 x + 3 } 3 \\
& \frac{-3 x^{4} \quad \frac{-5 x^{2}}{+}}{6 x^{3}+3 x^{2}-10 x-5}
\end{aligned}
$$

Here, other two zeroes of $p(x)$ are the two zeroes of quotient $3 x^{2}+6 x+3$
Put $\quad 3 x^{2}+6 x+3=0$
$\Rightarrow \quad 3(x+1)^{2}=0$
$\Rightarrow \quad x=-1$ and $x=-1$
Hence, all the zeroes of $p(x)$ are $\sqrt{\frac{5}{3}}$,
$-\sqrt{\frac{5}{3}},-1$ and -1 .

WORKSHEET- 1

1. Let the polynomial whose zeroes are -2 and $\frac{-1}{3}$ be $p(x)$.

$$
\left.\begin{array}{l}
\Rightarrow \quad p(x)=(x+2)\left(x+\frac{1}{3}\right) \\
\Rightarrow
\end{array} \quad p(x)=\frac{1}{3}(x+2)(3 x+1)\right)
$$

2. $-\frac{3}{2},-\frac{11}{2}$

Hint: Given polynomial can be written as: $p(x)=2 x^{2}+3 x-11$

Sum of zeroes $=\frac{-b}{a}$
Product of zeroes $=\frac{c}{a}$.
3. We know that the degree of the remainder is less than the degree of divisor or does't exist.
Here, degree of the divisor is 3 , therefore, the possible degree of the remainder according to the options can be any out of 0,1 and 2 .
4. $k=0$.

Hint: Substitute $x=-\sqrt{2}$ in $x^{2}+\sqrt{2} x+k$ $=0$.
5. Since α, β are the zeroes of $x^{2}+p x+q$, then

$$
\alpha+\beta=-p ; \alpha \beta=q
$$

Now, $\frac{1}{\alpha}+\frac{1}{\beta}=\frac{\alpha+\beta}{\alpha \beta}=-\frac{p}{q}$
and $\frac{1}{\alpha} \times \frac{1}{\beta}=\frac{1}{\alpha \beta}=\frac{1}{q}$
So the polynomial having zeroes $\frac{1}{\alpha}$ and $\frac{1}{\beta}$
will be

$$
\begin{aligned}
q(x) & =x^{2}-\left(\frac{1}{\alpha}+\frac{1}{\beta}\right) x+\left(\frac{1}{\alpha} \times \frac{1}{\beta}\right) \\
& =x^{2}+\frac{p}{q} x+\frac{1}{q}
\end{aligned}
$$

or $q(x)=q x^{2}+p x+1$.
6. $g(x)=x^{2}+2 x+7$.

Hint: Divide $x^{3}+3 x-14$ by $x-2$.
7. One example is:

$$
\begin{aligned}
p(x) & =3 x^{2}-3 x+12 . \\
g(x) & =x^{2}-x+4 \\
\therefore \quad q(x) & =3 \\
r(x) & =0
\end{aligned}
$$

8. $\sqrt{\frac{1}{7}},-\sqrt{\frac{1}{7}}$

Hint: For zeroes: $21 x^{2}-3=0$

$$
\begin{aligned}
& x^{2} & =\frac{1}{7} \\
\therefore & x & = \pm \sqrt{\frac{1}{7}} .
\end{aligned}
$$

9. Since $a=2$ is a zero of $a^{3}-3 a^{2}-10 a+24$, therefore $a^{3}-3 a^{2}-10 a+24$ is divisible by $a-2$. Further the obtained quotient will provide the other two zeroes.

$$
\begin{array}{r}
a-2 \begin{array}{c}
a^{2}-a-12 \\
\frac{a^{3}-3 a^{2}-10 a+24}{a^{3}-2 a^{2}} \\
\frac{-a^{2}-10 a+24}{} \\
\frac{-a^{2}+2 a}{+}- \\
-12 a+24 \\
-12 a+24 \\
\hline
\end{array} \\
a^{2}-a-12=(a-4)(a+3)
\end{array}
$$

For other zeroes, put $a-4=0$ and $a+3=0$

$$
a=-3,4
$$

Thus, the other two zeroes are -3 and 4 .
10. Let $\mathrm{P}(x)=2 x^{2}-5 x-(2 k+1)$

Let α, β be its zeroes such that $\beta=2 \alpha$.

$$
\begin{array}{ll}
\therefore & \alpha+\beta=\frac{-(-5)}{2}=\frac{5}{2} \\
\Rightarrow & \alpha+2 \alpha=\frac{5}{2} \Rightarrow 3 \alpha=\frac{5}{2} \\
\Rightarrow & \alpha=\frac{5}{3 \times 2} \Rightarrow \alpha=\frac{5}{6} \\
\therefore & \beta=2 \alpha=\frac{2}{5 / 6}=\frac{5}{3} .
\end{array}
$$

\therefore Zeroes are: $\frac{5}{6}$ and $\frac{5}{3}$.
Also $\quad \alpha \beta=\frac{-(2 k+1)}{2}$
$\Rightarrow \quad\left(\frac{5}{6}\right)\left(\frac{5}{3}\right)=\frac{-(2 k+1)}{2}$
$\Rightarrow \quad \frac{25}{18} \times 2=-2 k-1$
$\Rightarrow \quad 2 k=-1-\frac{25}{9}=\frac{-9-25}{9}=\frac{-34}{9}$
$\Rightarrow \quad k=\frac{-17}{9}$.
11. $\frac{b^{2}-2 a c}{c^{2}}$

Hint: $\quad \frac{1}{\alpha^{2}}+\frac{1}{\beta^{2}}=\frac{\alpha^{2}+\beta^{2}}{\alpha^{2} \beta^{2}}$

$$
=\frac{(\alpha+\beta)^{2}-2 \alpha \beta}{\alpha^{2} \beta^{2}}=\frac{b^{2}-2 a c}{c^{2}} .
$$

OR
Let us divide $x^{4}+2 x^{3}+8 x^{2}+12 x+18$ by $x^{2}+5$.

$$
\begin{array}{r}
x ^ { 2 } + 5 \longdiv { x ^ { 2 } + 2 x + 3 } \begin{array} { r }
{ x ^ { 4 } + 2 x ^ { 3 } + 8 x ^ { 2 } + 1 2 x + 1 8 } \\
{ \frac { x ^ { 4 } \quad \pm } { } \quad \begin{array} { r }
{ 2 x ^ { 2 } }
\end{array} } \\
{ \frac { 2 x ^ { 3 } + 3 x ^ { 2 } + 1 2 x + 1 8 } { } + \frac { 2 x ^ { 3 } \quad \pm 1 0 x } { 3 x ^ { 2 } + 2 x + 1 8 } } \\
{ \frac { - 3 x ^ { 2 } \quad \pm 1 5 } { 2 x + 3 } }
\end{array}
\end{array}
$$

Clearly, the remainder is $2 x+3$.
Now, $p x+q=2 x+3$
Comparing the coefficients of like powers of x both the sides, we get

$$
p=2, q=3 .
$$

WORKSHEET-13

1. If -4 is zero of given polynomial $p(x)=$ $x^{2}-x-(2 k+2)$

$$
\begin{array}{rlrl}
\Rightarrow & p(-4) & =0 \\
\Rightarrow & & p(-4) & =(4)^{2}-(-4)-(2 k+2) \\
& & =0 \\
\Rightarrow & 16+4-2 k-2 & =0 \\
\Rightarrow & 18-2 k & =0 \\
\Rightarrow & k & =9 .
\end{array}
$$

2. $\alpha+\beta=\frac{3}{2}, \alpha \beta=\frac{1}{2}$

$$
\begin{aligned}
& \therefore \quad(\alpha-\beta)^{2}=(\alpha+\beta)^{2}-4 \alpha \beta \\
& =\frac{9}{4}-2=\frac{1}{4} \\
& \Rightarrow \quad \alpha-\beta= \pm \frac{1}{2}
\end{aligned}
$$

$\therefore \quad \alpha=\frac{1}{2}, \beta=1$ or $\alpha=1, \beta=\frac{1}{2}$
$\therefore \alpha+2=\frac{5}{2}, \beta+2=3$ or $\alpha+2=3$,

$$
\beta+2=\frac{5}{2} .
$$

Hence, the required polynomial can be
$x^{2}-\left(\frac{5}{2}+3\right) x+\frac{5}{2} \times 3$, i.e., $x^{2}-\frac{11}{2} x+\frac{15}{2}$.
3. $p(x)=x^{2}-$ (sum of zeroes) $x+$ product of zeroes

$$
\begin{aligned}
& =x^{2}-\left(\frac{1}{2}+2\right) x+\frac{1}{2} \times 2 \\
& =x^{2}-\frac{5}{2} x+1
\end{aligned}
$$

4. Let zeroes be α and β.
$\alpha+\beta=6, \alpha \beta=4$
Using $(\alpha-\beta)^{2}=(\alpha+\beta)^{2}-4 \alpha \beta$, we get
$(\alpha-\beta)^{2}=6^{2}-4 \times 4=20 \Rightarrow \alpha-\beta,= \pm 2 \sqrt{5}$
Thus, the difference of zeroes is $\pm 2 \sqrt{5}$.
5. $\frac{\alpha}{\beta}+\frac{\beta}{\alpha}=\frac{\alpha^{2}+\beta^{2}}{\alpha \beta}$

$$
\begin{aligned}
& =\frac{(\alpha+\beta)^{2}-2 \alpha \beta}{\alpha \beta} \\
& =\frac{25-12}{6}=\frac{13}{6} .
\end{aligned}
$$

6. $x^{2}-1=(x+1)(x-1)$
$\therefore \quad x=-1$ or 1 , both will satisfy with the given polynomial.
$\therefore \quad$ We get, $p+q+r+s+t=0$

$$
\begin{equation*}
\text { and } \quad p-q+r-s+t=0 \tag{i}
\end{equation*}
$$

From (ii),

$$
\begin{aligned}
p+r+t & =q+s \\
2(q+s) & =0 \Rightarrow q+s=0[\text { From }(i)] \\
\therefore \quad p+r+t & =q+s=0 .
\end{aligned}
$$

7. No.

Hint: Divide $q(x)$ by $g(x)$. If the remainder obtained is zero, then the $g(x)$ is a factor of $q(x)$ otherwise not.
8. $a=1, b=7$

Hint: Put remainder $=0$ and equate coefficient of x in the remainder and constant term with zero.
9. According to division algorithm,

$$
p(x)=g(x) \times q(x)+r(x)
$$

(i) $p(x)=6 x^{2}+3 x+2, g(x)=3$ $q(x)=2 x^{2}+x, r(x)=2$
(ii) $p(x)=8 x^{3}+6 x^{2}-x+7, g(x)=2 x^{2}+1$ $q(x)=4 x+3, r(x)=-5 x+4$
(iii) $p(x)=9 x^{2}+6 x+5, g(x)=3 x+2$, $q(x)=3 x, r(x)=5$.
10. Given quadratic polynomial is

$$
\begin{aligned}
& 5 \sqrt{5} x^{2}+30 x+8 \sqrt{5} \\
= & 5 \sqrt{5} x^{2}+30 x+8 \sqrt{5} \\
= & 5 \sqrt{5} x^{2}+20 x+10 x+8 \sqrt{5} \\
= & 5 x(\sqrt{5} x+4)+2 \sqrt{5}(\sqrt{5} x+4) \\
= & (5 x+2 \sqrt{5})(\sqrt{5} x+4)
\end{aligned}
$$

To find its zeroes, put $5 x+2 \sqrt{5}=0$ and $\sqrt{5} x+4=0$.
$\Rightarrow \quad x=-\frac{2}{\sqrt{5}}$ and $x=\frac{-4}{\sqrt{5}}$
i.e., $\quad x=-\frac{2 \sqrt{5}}{5}$ and $x=-\frac{4 \sqrt{5}}{5}$

So, sum of zeroes $=\frac{-2 \sqrt{5}}{5}-\frac{4 \sqrt{5}}{5}=-\frac{6 \sqrt{5}}{5}$
And product of zeroes

$$
=\left(-\frac{2 \sqrt{5}}{5}\right) \times\left(-\frac{4 \sqrt{5}}{5}\right)=\frac{8}{5} .
$$

Also, sum of zeroes $=-\frac{\text { Coefficient of } x}{\text { Coefficient of } x^{2}}$

$$
=-\frac{30}{5 \sqrt{5}}=-\frac{6 \sqrt{5}}{5}
$$

And product of zeroes $=\frac{\text { Constant term }}{\text { Coefficient of } x^{2}}$

$$
=\frac{8 \sqrt{5}}{5 \sqrt{5}}=\frac{8}{5} .
$$

Hence verified.

OR

$q(x)=3 x^{2}-2 x+1$
Hint: Let $S=\frac{\alpha-1}{\alpha+1}+\frac{\beta-1}{\beta+1}$

$$
P=\left(\frac{\alpha-1}{\alpha+1}\right)\left(\frac{\beta-1}{\beta+1}\right)
$$

\therefore Required polynomial $q(x)=x^{2}-\mathrm{S} x+\mathrm{P}$.
11. As $\sqrt{\frac{3}{2}}$ and $-\sqrt{\frac{3}{2}}$ are the zeroes of the given quadratic polynomial, so $\left(x-\sqrt{\frac{3}{2}}\right)$ and $\left(x+\sqrt{\frac{3}{2}}\right)$ will be the factors of that. Conse-
quently, $\left(x-\sqrt{\frac{3}{2}}\right) \times\left(x+\sqrt{\frac{3}{2}}\right)$,i.e., $\left(x^{2}-\frac{3}{2}\right)$ must be the factor of that. Let us divide
$2 x^{4}-10 x^{3}+5 x^{2}+15 x-12$ by $x^{2}-\frac{3}{2}$.

$$
\begin{array}{r}
2 x^{2}-10 x+8 \\
x^{2}-\frac{3}{2} \begin{array}{l}
2 x^{4}-10 x^{3}+5 x^{2}+15 x-12 \\
2 x^{4} \quad-3 x^{2}
\end{array} \\
\begin{array}{l}
-10 x^{3}+8 x^{2}+15 x-12 \\
\begin{array}{l}
-10 x^{3} \quad+15 x
\end{array} \\
\hline+\begin{array}{ll}
8 x^{2} & -12 \\
8 x^{2} & +12
\end{array} \\
\frac{-}{0}
\end{array}
\end{array}
$$

Now, $2 x^{4}-10 x^{3}+5 x^{2}+15 x-12$
$=\left(x^{2}-\frac{3}{2}\right)\left(2 x^{2}-10 x+8\right)$
By splitting $-10 x$, we factorise $2 x^{2}-10 x+8$ as $(x-4)(2 x-2)$. So, its zeroes are given by $x=4$ and $x=1$.

Therefore, all zeroes of the given polynomial are $\sqrt{\frac{3}{2}},-\sqrt{\frac{3}{2}}, 1$ and 4 .

WORKSHEET- 4

1. Let zeroes be α and β, then

$$
\begin{align*}
(\alpha-\beta)^{2} & =144 \\
\alpha-\beta & = \pm 12 \tag{i}\\
\alpha+\beta & =-p \tag{ii}\\
\alpha \beta & =45 \tag{iii}
\end{align*}
$$

Also, we have

$$
\begin{array}{rlrl}
& & (\alpha-\beta)^{2} & =(\alpha+\beta)^{2}-4 \alpha \beta \\
\Rightarrow \quad 144 & =p^{2}-180 \Rightarrow p= \pm 18 .
\end{array}
$$

2. $1-c$

Hint: $f(x)=x^{2}-p x-(p+c)$ $(\alpha+1)(\beta+1)=\alpha \beta+(\alpha+\beta)+1$.
3. $\frac{p}{r}$

Hint: $\frac{1}{\alpha \beta}+\frac{1}{\beta \gamma}+\frac{1}{\gamma \alpha}=\frac{\alpha+\beta+\gamma}{\alpha \beta \gamma}$.
4. Let the given linear polynomial be

$$
\begin{equation*}
y=a x+b \tag{i}
\end{equation*}
$$

This passes through points $(1,-1),(2,1)$ and $\left(\frac{3}{2}, 0\right)$

$$
\begin{align*}
-1 & =a+b \tag{ii}\\
1 & =2 a+b \tag{iii}\\
0 & =\frac{3}{2} a+b \tag{iv}
\end{align*}
$$

Solving equations (ii) and (iii), we get $a=2$, $b=-3$ which satisfy to equation (iv).
Consequently, using equation (i), we get

$$
y=2 x-3
$$

\therefore Polynomial is $p(x)=2 x-3$

$$
\begin{aligned}
\text { Since } p(x)=0 \text { if } x & =\frac{3}{2} \\
\Rightarrow \quad x & =\frac{3}{2} \text { is zero of } p(x) .
\end{aligned}
$$

5. Let us divide $a x^{3}+b x-c$ by $x^{2}+b x+c$ by the long division method.

$$
\begin{aligned}
x^{2}+b x+c & \begin{array}{l}
a x-a b \\
a x^{3}+b x-c \\
a x^{3}+a b x^{2} \pm a c x \\
-a b x^{2}+(b-a c) x-c
\end{array} \\
& \frac{-a b x^{2}-a b^{2} x-a b c}{\left(a b^{2}+b-a c\right) x+a b c-c}
\end{aligned}
$$

Put remainder $=0$
$\Rightarrow\left(a b^{2}+b-a c\right) x+(a b c-c)=0$
$\Rightarrow a b^{2}+b-a c=0$ and $a b c-c=0$
Consider $a b c-c=0 \Rightarrow(a b-1) c=0$
$\Rightarrow a b=1$ or $c=0$. Hence, $a b=1$.
6. Hint: Let $f(x)=x^{3}-m x^{2}-2 n p x+n p^{2}$ $(x-p)$ is a factor of $p(x)$
$\Rightarrow \quad f(x)=0$ at $x=p$.
$\Rightarrow \quad p^{3}-p^{2} m-p^{2} n=0$
$\Rightarrow \quad p^{2}[(p-(m+n)]=0$
$\Rightarrow \quad p=m+n$ since $p \neq 0$.
7. $x^{3}-4 x^{2}+x+6$

Hint: The required cubic polynomial is given by $(x-3)(x-2)(x+1)$ or $x^{3}-4 x^{2}+x$ $+6$
This is the required polynomial.
8.

Hint: $\quad \alpha+\beta+\gamma=5$

$$
\alpha \beta+\beta \gamma+\alpha \gamma=-2
$$

$$
\alpha \beta \gamma=-24
$$

Let $\quad \alpha \beta=12$
$\therefore \quad \gamma=-2$
$\therefore \quad \alpha+\beta=7$
$\Rightarrow \quad(\alpha-\beta)^{2}=1$
$\Rightarrow \quad \alpha-\beta= \pm 1$
$\therefore \quad \alpha-\beta=1$ or $\alpha-\beta=-1$
Solving $\quad \alpha+\beta=7$ and $\alpha-\beta=1$, we get

$$
\alpha=4, \beta=3
$$

And solving $\alpha+\beta=7$ and $\alpha-\beta=-1$
we get

$$
\alpha=3, \beta=4 .
$$

9. $f(x)$ would become exactly divisible by $g(x)$ if the remainder is subtracted from $f(x)$.
Let us divide $f(x)$ by $g(x)$ to get the remainder.

$$
\begin{array}{r}
x ^ { 2 } - 4 x + 3 \longdiv { x ^ { 2 } + 6 x + 8 } \begin{array} { r }
{ x ^ { 4 } + 2 x ^ { 3 } - 1 3 x ^ { 2 } - 1 2 x + 2 1 } \\
{ \frac { x ^ { 4 } - 4 x ^ { 3 } + 3 x ^ { 2 } } { 6 x ^ { 3 } - 1 6 x ^ { 2 } - 1 2 x + 2 1 } } \\
{ \frac { - 6 x ^ { 3 } - 2 4 x ^ { 2 } + 1 8 x } { + } } \\
{ 8 x ^ { 2 } - 3 0 x + 2 1 } \\
{ \frac { 8 x ^ { 2 } - 3 2 x + 2 4 + } { 2 x - 3 } }
\end{array}
\end{array}
$$

Hence, we should subtract $2 x-3$ from $f(x)$.
10. If $2 \pm \sqrt{3}$ are zeroes of $p(x)$, then $x-(2+\sqrt{3})$ and $x-(2-\sqrt{3})$ are factors of $p(x)$. Consequently $\{x-(2+\sqrt{3})\}\{x-(2-\sqrt{3})\}$ i.e., $(x-2)^{2}-3$, i.e., $x^{2}-4 x+1$ is factor of $p(x)$. Further,

$$
\begin{array}{r}
x ^ { 2 } - 4 x + 1 \longdiv { x ^ { 4 } - 6 x - 3 5 } \begin{array} { r }
{ \begin{array} { l }
{ x ^ { 4 } - 2 6 x ^ { 2 } + 1 3 8 x - 3 5 } \\
{ x ^ { 4 } - 4 x ^ { 3 } \pm x ^ { 2 } }
\end{array} } \\
{ \frac { - 2 x ^ { 3 } - 2 7 x ^ { 2 } + 1 3 8 x - 3 5 } { } } \\
{ \begin{array} { l }
{ - 2 x ^ { 3 } + 8 x ^ { 2 } - 2 x } \\
{ + }
\end{array} } \\
{ \begin{array} { l }
{ - 3 5 x ^ { 2 } + 1 4 0 x - 3 5 } \\
{ - 3 5 x ^ { 2 } + 1 4 0 x - 3 5 }
\end{array} } \\
{ + }
\end{array}
\end{array}
$$

Clearly $x^{2}-2 x-35$ is a factor of $p(x)$
$\Rightarrow(x-7)(x+5)$ is a factor of $p(x)$
$\Rightarrow x-7$ and $x+5$ are factors of $p(x)$
$\Rightarrow x-7=0$ and $x+5=0$ give other zeroes of $p(x)$
$\Rightarrow x=7$ and $x=-5$ are other zeroes of $p(x)$.
Hence, 7 and -5 are required zeroes.
11. Hint: $\frac{\alpha^{2}}{\beta^{2}}+\frac{\beta^{2}}{\alpha^{2}}=\frac{\alpha^{4}+\beta^{4}}{\alpha^{2} \beta^{2}}$

$$
=\frac{\left\{(\alpha+\beta)^{2}-2 \alpha \beta\right\}^{2}-2 \alpha^{2} \beta^{2}}{\alpha^{2} \beta^{2}} .
$$

OR
Given polynomial is:

$$
\begin{aligned}
f(x) & =p q x^{2}+\left(q^{2}-p r\right) x-q r \\
& =p q x^{2}+\left(q^{2}-p r\right) x-q r \\
& =p q x^{2}+q^{2} x-p r x-q r \\
& =q x(p x+q)-r(p x+q) \\
& =(p x+q)(q x-r)
\end{aligned}
$$

$p x+q=0$ and $q x-r=0$ provide the zeroes of $f(x)$. So zeroes are $-\frac{q}{p}$ and $\frac{r}{q}$.

Sum of zeroes $=-\frac{q}{p}+\frac{r}{q}=\frac{p r-q^{2}}{p q}$

$$
=-\frac{\text { Coefficient of } x}{\text { Coefficient of } x^{2}}
$$

Product of zeroes $=-\frac{q}{p} \times \frac{r}{q}=-\frac{q r}{p q}$

$$
=\frac{\text { Constant term }}{\text { Coefficient of } x^{2}} \text {. }
$$

WORKSHEET- 15

1. Sum of zeroes $=-\frac{-3 \sqrt{2}}{3}=\sqrt{2}$

$$
\text { Product of zeroes }=\frac{1}{3} .
$$

2. At $x=2, p(x)=0$, i.e., $p(2)=0$

$$
\begin{aligned}
\therefore & a(2)^{2}-3 \times 2(a-1)-1 & =0 \\
\Rightarrow & 4 a-6 a+6-1 & =0 \\
\Rightarrow & a & =\frac{5}{2} .
\end{aligned}
$$

3. Sum of zeroes $=\alpha+\beta=5$

$$
\text { Product of zeroes }=\alpha \beta=4
$$

Now, $\frac{1}{\alpha}+\frac{1}{\beta}-2 \alpha \beta=\frac{\alpha+\beta}{\alpha \beta}-2 \alpha \beta$

$$
=\frac{5}{4}-2 \times 4=-\frac{27}{4} .
$$

4. Using division algorithm, we have

$$
\begin{aligned}
& g(x) \times(x-2)-2 x+4=x^{3}-3 x^{2}+x+2 \\
& \Rightarrow \quad g(x)=\frac{x^{3}-3 x^{2}+3 x-2}{x-2}
\end{aligned}
$$

Here, at $x=2$,

$$
\begin{array}{lr}
& x^{3}-3 x^{2}+3 x-2=8-12+6-2=0 \\
\therefore & x^{3}-3 x^{2}+3 x-2=(x-2)\left(x^{2}-x+1\right) \\
\therefore & g(x)=\frac{(x-2)\left(x^{2}-x+1\right)}{(x-2)} \\
\Rightarrow & g(x)=x^{2}-x+1 .
\end{array}
$$

5. Given $s=\sqrt{2}$ and $p=-\frac{3}{2}$

The required polynomial is given by $k\left[x^{2}-s x+p\right]$
i.e., $k\left(x^{2}-\sqrt{2} x-\frac{3}{2}\right)$, where k is any real number.
Let us find zeroes of this polynomial.

$$
\begin{aligned}
k\left(x^{2}-\sqrt{2} x-\frac{3}{2}\right) & =\frac{k}{2}\left(2 x^{2}-2 \sqrt{2} x-3\right) \\
& =\frac{k}{2}(\sqrt{2} x-3)(\sqrt{2} x+1)
\end{aligned}
$$

$\sqrt{2} x-3=0$ and $\sqrt{2} x+1=0$ provides the zeroes.
Hence $\frac{3 \sqrt{2}}{2}$ and $\frac{-\sqrt{2}}{2}$ are the required
zeroes.
6. Let $f(x)=4 \sqrt{3} x^{2}+5 x-2 \sqrt{3}$

$$
\begin{aligned}
& =4 \sqrt{3} x^{2}+8 x-3 x-2 \sqrt{3} \\
& =4 x(\sqrt{3} x+2)-\sqrt{3}(\sqrt{3} x+2) \\
& =(\sqrt{3} x+2)(4 x-\sqrt{3})
\end{aligned}
$$

To find zeroes of $f(x)$, put

$$
\begin{aligned}
& \sqrt{3} x+2=0 \quad \text { and } 4 x-\sqrt{3}=0 \\
\Rightarrow & x=\frac{-2}{\sqrt{3}}=\frac{-2 \sqrt{3}}{3} \text { and } x=\frac{\sqrt{3}}{4}
\end{aligned}
$$

Thus, the zeroes are $\alpha=-\frac{2 \sqrt{3}}{3}$ and $\beta=\frac{\sqrt{3}}{4}$
Sum of zeroes $=\alpha+\beta$

$$
\begin{aligned}
& =-\frac{2 \sqrt{3}}{3}+\frac{\sqrt{3}}{4}=\frac{-5 \sqrt{3}}{12} \\
& =-\frac{5 \sqrt{3}}{4 \times 3}=-\frac{5}{4 \sqrt{3}} \\
& =-\frac{\text { Coefficient of } x}{\text { Coefficient of } x^{2}}
\end{aligned}
$$

Product of zeroes $=\alpha \beta=-\frac{2 \sqrt{3}}{3} \cdot \frac{\sqrt{3}}{4}$

$$
=-\frac{2 \sqrt{3}}{4 \sqrt{3}}=\frac{\text { Constant term }}{\text { Coefficient of } x^{2}} \text {. }
$$

Hence verified.
7. (i) Let $y=p(x)$
$\therefore \quad y=-x^{2}+x+6$
The table for some values of x and their corresponding values of y is given by

x	-2	-1	0	1	2	3
y	0	4	6	6	4	0

Let us draw the graph of $p(x)$ using this table.

From the graph, it is clear that the zeroes of $p(x)$ are -2 and 3 .
(ii) Let $y=p(x)$

$$
\therefore \quad y=x^{3}-4 x
$$

The table for some values of x and their corresponding values of y is given by

x	-2	-1	0	1	2
y	0	3	0	-3	0

Let us draw the graph of $p(x)$ by using this table.

From the graph, it is clear that the zeroes of $p(x)$ are $-2,0$ and 2 .
8. (i) First we divide $x^{4}+x^{3}+8 x^{2}+a x+b$ by $x^{2}+1$ as follows:

$$
\begin{array}{r}
x ^ { 2 } + 1 \longdiv { x ^ { 4 } + x ^ { 3 } + 8 x ^ { 2 } + a x + b } \\
\frac{x^{4}+x^{2}}{-\quad-} \begin{array}{l}
x^{3}+7 x^{2}+a x+b \\
x^{3}+x
\end{array} \\
\frac{-\quad-7 x^{2}+(a-1) x+b}{(a-1) x+(b-7)}
\end{array}
$$

Since, $x^{4}+x^{3}+8 x^{2}+a x+b$ is divisible by $x^{2}+1$, therefore remainder $=0$
i.e., $(a-1) x+(b-7)=0$ or $(a-1) x+(b-7)=0 . x$ $+0$
Equating the corresponding terms, we have

$$
\begin{array}{rlll}
& a-1 & =0 & \text { and } \\
\text { i.e., } & b-7=0 \\
a & =1 & \text { and } \quad b=7
\end{array}
$$

(ii) Common good, Social responsibility.

CHAPTER TEST

1. Let $p(x)=x\left(x+\frac{7}{2}\right)$
$\therefore \quad$ Zeroes are given by
$x=0$ and $\left(x+\frac{7}{2}\right)=0$.
Hence zeroes are 0 and $-\frac{7}{2}$.
2. $\because \alpha+\beta=\frac{-5}{2}, \alpha \beta=\frac{1}{2}$

$$
\therefore \quad \alpha+\beta+\alpha \beta=-2
$$

3. $p(x)=x^{2}-(\alpha+\beta) x+\alpha \beta=x^{2}+x-2$.
4. Let $p(x)=2 x^{3}+4 x^{2}+5 x+7$

Now, $p(x)=g(x) \times 2 x+(7-5 x)$

$$
\begin{gathered}
g(x)=\frac{p(x)-(7-5 x)}{2 x} \\
=\frac{2 x^{3}+4 x^{2}+5 x+7-7+5 x}{2 x}=x^{2}+2 x+5
\end{gathered}
$$

5. $\frac{6 \sqrt{5}}{5},-\frac{9}{4}$

Hint: $\quad \alpha+\beta=-\frac{\text { Coefficient of } x}{\text { Coefficient of } x^{2}}$

$$
\alpha \beta=\frac{\text { Constant term }}{\text { Coefficient of } x^{2}}
$$

6. $\frac{-1}{3}$

Hint: $\alpha=-\beta$

$$
\alpha+\beta=0 \quad \Rightarrow \quad \frac{-b}{a}=0
$$

7. $f(x)=a x^{3}+b x^{2}+c x+d$
$g(x)=a x^{2}+b x+c$
$q(x)=x$
$r(x)=d$.
8. If α, β and γ are the zeroes of a cubic polynomial $f(x)$, then

$$
\begin{aligned}
f(x)= & x^{3}-(\alpha+\beta+\gamma) x^{2} \\
& +(\alpha \beta+\beta \gamma+\gamma \alpha) x-\alpha \beta \gamma
\end{aligned}
$$

Here, $\quad \alpha+\beta+\gamma=4, \alpha \beta+\beta \gamma+\gamma \alpha=1$
and $\alpha \beta \gamma=-6$
\therefore $f(x)=x^{3}-4 x^{2}+x+6$.
9. We have
$4 \sqrt{3} x^{2}+5 x-2 \sqrt{3}=(\sqrt{3} x+2)(4 x-\sqrt{3})$
So, the value of $4 \sqrt{3} x^{2}+5 x-2 \sqrt{3}$ is zero when, $\sqrt{3} x+2=0$ or $4 x-\sqrt{3}=0$,
i.e., when $x=\frac{-2}{\sqrt{3}}$ or $x=\frac{\sqrt{3}}{4}$.

Therefore, the zeroes of $4 \sqrt{3} x^{2}+5 x-2 \sqrt{3}$ are $\frac{-2}{\sqrt{3}}$ and $\frac{\sqrt{3}}{4}$.
Now, sum of zeroes $\frac{-2}{\sqrt{3}}+\frac{\sqrt{3}}{4}=\frac{-5}{4 \sqrt{3}}$

$$
=\frac{- \text { Coefficient of } x}{\text { Coefficient of } x^{2}}
$$

Product of zeroes $=\left(\frac{-2}{\sqrt{3}}\right) \times\left(\frac{\sqrt{3}}{4}\right)=\frac{-2 \sqrt{3}}{4 \sqrt{3}}$

$$
=\frac{\text { Constant term }}{\text { Coefficient of } x^{2}} .
$$

10. (i) Let $p(x)=$ Total Relief Fund

$$
\begin{aligned}
g(x)= & \text { Number of families who } \\
& \text { received Relief Fund }
\end{aligned}
$$

$q(x)=$ Amount each family received
$r(x)=$ Amount left after distribution
When the polynomial $p(x)$ is divided by a polynomial $g(x)$ such that $q(x)$ and $r(x)$ are respectively the quotient and the remainder, the division algorithm is

$$
\begin{equation*}
p(x)=g(x) \cdot q(x)+r(x) \tag{i}
\end{equation*}
$$

According to the question,

$$
\begin{aligned}
& p(x)=3 x^{3}+x^{2}+2 x+5 \\
& q(x)=3 x-5 \\
& r(x)=9 x+10
\end{aligned}
$$

Substituting these values of $p(x), q(x)$ and $r(x)$ in the equation (i), we get

$$
\begin{array}{rlrl}
& & 3 x^{3}+x^{2}+2 x+5 & =g(x) \cdot(3 x-5)+9 x+10 \\
\Rightarrow \quad(3 x-5) g(x) & =3 x^{3}+x^{2}+2 x+5-9 x-10 \\
& =3 x^{3}+x^{2}-7 x-5 \\
\Rightarrow \quad & & g(x) & =\frac{3 x^{3}+x^{2}-7 x-5}{3 x-5}
\end{array}
$$

To find $g(x)$, we proceed as following:

$$
\begin{array}{r}
3 x - 5 \longdiv { \begin{array} { l }
{ x ^ { 2 } + 2 x + 1 } \\
{ 3 x ^ { 3 } + x ^ { 2 } - 7 x - 5 } \\
{ 3 x ^ { 3 } - 5 x ^ { 2 } }
\end{array} } \begin{array} { r }
{ \frac { - \quad + } { 6 x ^ { 2 } - 7 x - 5 } \begin{array} { r }
{ 6 x ^ { 2 } - 1 0 x }
\end{array} } \\
{ - \quad + \begin{array} { r }
{ 3 x - 5 } \\
{ 3 x - 5 }
\end{array} } \\
{ \frac { - \quad + } { 0 } }
\end{array}
\end{array}
$$

Thus, $g(x)=x^{2}+2 x+1$.
(ii) Common good, Accountability, social responsibility.
11. Since $\frac{-1}{\sqrt{3}}$ and $\frac{1}{\sqrt{3}}$ are zeroes.

Therefore, $\left(x-\frac{1}{\sqrt{3}}\right)\left(x+\frac{1}{\sqrt{3}}\right)$ will be a factor of $p(x)$, i.e., $x^{2}-\frac{1}{3}$ is a factor of $p(x)$.

$$
\begin{gathered}
x^{2}-\frac{1}{3} \begin{array}{l}
3 x^{2}-15 x+18 \\
\begin{array}{l}
3 x^{4}-15 x^{3}+17 x^{2}+5 x-6 \\
3 x^{4} \quad-x^{2}
\end{array} \\
\frac{-15 x^{3}+18 x^{2}+5 x-6}{} \\
\frac{-15 x^{3} \quad+5 x}{+} \\
\frac{18 x^{2}-6}{0}+
\end{array} \\
\frac{18 x^{2}-6}{0}
\end{gathered}
$$

Here, $3 x^{2}-15 x+18=x^{2}-5 x+6$

$$
=(x-3)(x-2)
$$

Other zeroes are given by $x-3=0$ and $x-2=0$.
So, other zeroes are 3 and 2 .
Hence, all the zeroes are $-\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, 3$ and 2.

WORKSHEET-16

1. As

$$
a m \neq b l
$$

$$
\Rightarrow \quad \frac{a}{l} \neq \frac{b}{m}
$$

\Rightarrow unique solution for given pair.
2. $k=6$

Hint: $\frac{2}{k}=\frac{-3}{-9}$.
3. Let the two numbers be x and y

$$
\left.\Rightarrow \quad \begin{array}{l}
x+y=35 \\
x-y=13
\end{array}\right\}
$$

Adding $\quad \Rightarrow \quad 2 x=48 \quad \Rightarrow \quad x=24$
Subtracting $\Rightarrow 2 y=22 \Rightarrow y=11$
Hence, two numbers are 24 and 11.
4.

a_{1}	$=\frac{3}{2}, b_{1}=\frac{5}{3}, c_{1}=7$
a_{2}	$=\frac{3}{2}, b_{2}=\frac{2}{3}, c_{3}=6$
or $\quad \frac{a_{1}}{a_{2}}$	$=\frac{\frac{3}{3}}{\frac{3}{2}}=1 ; \quad \frac{b_{1}}{b_{2}}=\frac{\frac{5}{3}}{\frac{2}{3}}=\frac{5}{2}$.

Clearly $\frac{a_{1}}{a_{2}} \neq \frac{b_{1}}{b_{2}} \Rightarrow$ lines are intersecting.
5. $x=3, y=2$

Hint: Let $\frac{1}{x+y}=u, \frac{1}{x-y}=v$.
\therefore Given equations become
$10 u+2 v=4$ and $15 u-5 v=-2$.
6. False.

Let us substitute $c=40$, The given equations become

$$
x-2 y=8
$$

or $\quad 5 x-10 y=40$
Here,

$$
\frac{1}{5}=\frac{-2}{-10}=\frac{8}{40}
$$

\Rightarrow The equations represent a pair of coincident lines.
\Rightarrow The equations have infinitely many solutions at $c=40$ and no solutions at $c \neq 40$.
\Rightarrow For no value of c, the given pair has a unique solution.
7. The given equations are

$$
\begin{array}{rlrl}
& & 4(2 x+3 y) & =9+7 y \\
\text { and } & 3 x+2 y & =4 \\
& \text { or } & 8 x+5 y-9 & =0 \\
& 3 x+2 y-4 & =0
\end{array}
$$

By cross-multiplication, we have

$$
\begin{array}{rlrl}
& & \frac{x}{-20+18} & =\frac{-y}{-32+27}=\frac{1}{16-15} \\
\Rightarrow \quad & \frac{x}{-2} & =\frac{-y}{-5}=\frac{1}{1} \\
x & =-2 \text { and } y=5
\end{array}
$$

Hence, $x=-2, y=5$ is the solution of the given system of equations.
8. To draw a line, we need atleast two solutions of its corresponding equation.
$x+3 y=6$; at $x=0, y=2$ and $x=3, y=1$.
So, two solutions of $x+3 y=6$ are:

x	0	3
y	2	1

$2 x-3 y=12 ;$ at $x=0, y=-4$ and at $x=6$, $y=0$
So, two solutions of $2 x-3 y=12$ are:

x	0	6
y	-4	0

Now, we draw the graph of given system of equations by using their corresponding solutions obtained in the above tables.

From the graph, the two lines intersect the y-axis at $(0,2)$ and $(0,-4)$.
9. Let the fixed charges and change per km be ` x and ' y respectively.

$$
\begin{align*}
& x+10 y=105 \tag{i}\\
& x+25 y=255 \tag{ii}
\end{align*}
$$

Subtracting equation (i) from equation (ii), we get

$$
\begin{align*}
15 y & =150 \\
y & =10 \tag{iii}
\end{align*}
$$

From equations (i) and (iii), we get

$$
x=5
$$

Now, the fare for travelling a distance of 35 km

$$
\begin{aligned}
& =x+35 y \\
& =5+35 \times 10 \\
& =` 355 .
\end{aligned}
$$

Fixed charge $=` 5$
Charge per km = ` 10 Total charge for \(35 \mathrm{~km}=` 355\).

WORKSHEET-17

1. As point of intersection of $y=x, x=6$ is $(6,6)$

$$
\therefore \text { area of } \begin{aligned}
\Delta & =\frac{1}{2} \times \text { base } \times \text { height } \\
& =\frac{1}{2} \times 6 \times 6=18 \text { sq. unit. }
\end{aligned}
$$

2. $x-5 y=5$.
$(2, k)$ lies on it.

$$
\begin{array}{ll}
\therefore & 2-5(k)=5
\end{array} \quad \Rightarrow \quad 5(k)=-3 x+1 . ~ k=-\frac{3}{5} .
$$

3. Condition for parallel lines is

$$
\begin{array}{rlrl}
& & \frac{a_{1}}{a_{2}} & =\frac{b_{1}}{b_{2}} \neq \frac{c_{1}}{c_{2}} \\
\Rightarrow & \frac{1}{3} & =\frac{-2}{k} \neq \frac{-3}{-1} \\
\Rightarrow & & k & =-6 .
\end{array}
$$

4. The given lines to be coincident, if

$$
\begin{gathered}
\frac{k}{12}=\frac{3}{k}=\frac{-(k-3)}{-k} \\
\frac{\text { II }}{}=\frac{\text { III }}{}
\end{gathered}
$$

Taking I and II, we have

$$
\begin{equation*}
k^{2}=36 \Rightarrow k= \pm 6 . \tag{i}
\end{equation*}
$$

Taking II and III, we have

$$
k^{2}-3 k=3 k \Rightarrow k(k-6)=0
$$

$$
\begin{equation*}
\Rightarrow \quad k=0 \text { or } 6 \tag{ii}
\end{equation*}
$$

Using (i) and (ii), we obtain

$$
k=6 .
$$

5. $x=5, y=2$

Hint: Adding the given equations, we get $2 x+y=12$
Subtracting the given equations, we get $3 x+y=17$
6. Yes.

Applying the condition

$$
\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}},
$$

we have

$$
\frac{1}{3}=\frac{2}{6}=\frac{-3}{-9}
$$

That is true.
Therefore, the pair of equations is consistent with infinitely many solutions.
7. Let: $2 x-y+3=0 \Rightarrow y=2 x+3$

x	0	1
y	3	5

and $3 x-5 y+1=0 \Rightarrow y=\frac{3 x+1}{5}$

x	-2	3
y	-1	2

From (i) and (ii),

$$
\begin{array}{rlrl}
\frac{2 x+3}{1} & =\frac{3 x+1}{5} \\
\Rightarrow \quad 10 x+15 & =3 x+1 \\
\Rightarrow \quad & 7 x & =-14 \quad \therefore \quad x=-2
\end{array}
$$

From equation (i),

$$
\begin{aligned}
y & =-4+3 \\
y & =-1 \\
\therefore \quad x & =-2, y=-1 .
\end{aligned}
$$

8. Let the cost price of the table be ` \(x\) and the cost price of the chair be \({ }^{`} y\).
The selling price of the table, when it is sold at a profit of 10%

$$
=\cdot\left(x+\frac{10}{100} x\right)=\cdot \frac{110}{100} x
$$

The selling price of the chair when it is sold at a profit of 25%

$$
\begin{equation*}
=\cdot\left(y+\frac{25}{100} y\right)=` \frac{125}{100} y \tag{i}
\end{equation*}
$$

So, $\frac{110}{100} x+\frac{125}{100} y=1050$

When the table is sold at a profit of 25%, its selling price $=`\left(x+\frac{25}{100} x\right)=` \frac{125}{100} x$
When the chair is sold at a profit of 10%, its selling price $=`\left(y+\frac{10}{100} y\right)=` \frac{110}{100} y$

So, $\frac{125}{100} x+\frac{110}{100} y=1065$
From equations (i) and (ii), we get

$$
110 x+125 y=105000
$$

and $\quad 125 x+110 y=106500$
On adding and subtracting these equations, we get

$$
235 x+235 y=211500
$$

and

$$
15 x-15 y=1500
$$

i.e.,

$$
\begin{equation*}
x+y=900 \tag{iii}
\end{equation*}
$$

and

$$
\begin{equation*}
x-y=100 \tag{iv}
\end{equation*}
$$

Solving equations (iii) and (iv), we get

$$
x=500, y=400
$$

So, the cost price of the table is ' 500 and the cost price of the chair is ${ }^{`} 400$.
9. Let the man's starting salary and fixed annually increment be x and y respectively.
According to the question,

$$
\begin{align*}
x+4 y & =15000 \tag{i}\\
x+10 y & =18000 \tag{ii}
\end{align*}
$$

Equations (i) and (ii) form the required pair of linear equations. Let us solve this pair. Subtracting equation (i) from equation (ii), we get

$$
6 y=3000 \Rightarrow y=500
$$

Substituting $y=500$ in equation (ii),
we get

$$
x=13000
$$

Hence, starting salary was `13000 and annual increment was` 500.
The value imbibe by the man are: consistency, hard work and sincerity

WORKSHEET - 18

1. Here, $\frac{2}{6}=\frac{-3}{-9} \neq \frac{9}{-5}$
$\therefore \quad$ Lines are parallel.
2. As the lines are intersecting each other,

$$
\frac{3}{a} \neq \frac{2}{-1} \Rightarrow a \neq \frac{-3}{2} .
$$

3. $3 x-y-5=0$ and $6 x-2 y-k=0$ have no solution
\Rightarrow These equations represent a pair of parallel lines.

$$
\begin{array}{ll}
\Rightarrow & \frac{3}{6}=\frac{-1}{-2} \neq \frac{-5}{-k} \\
\Rightarrow & k \neq-10 .
\end{array}
$$

4. No.

For infinitely many solutions, the following condition must be satisfied.

$$
\frac{\lambda}{2}=\frac{3}{6}=\frac{7}{-14}
$$

But, here $\frac{3}{6} \neq \frac{-7}{14}$ as $\frac{1}{2} \neq-\frac{1}{2}$
Hence, no value of ' λ ' provides the pair of infinitely many solutions.
5. As opposite sides are equal in rectangle

$$
\text { and } \left.\begin{array}{l}
x+3 y=13 \tag{i}\\
3 x+y=7
\end{array}\right\}
$$

From (i) and (ii),

$$
\begin{aligned}
x+3 y & =13 \times 3 \\
3 x+y & =7 \times 1 \\
3 x+9 y & =39 \\
3 x+y & =7 \\
-\quad-\quad & - \\
\hline 8 y & =32 \\
y & =4
\end{aligned}
$$

From equation (i),

$$
\left.\begin{array}{rlrl}
& & x+3 \times 4 & =13 \\
& \Rightarrow & x+12 & =13 \\
\Rightarrow & & x & =1 \\
& \therefore & & x
\end{array}\right)=1, y=4 .
$$

6. $x=6, y=-4, m=0$

Hint: Take $\frac{1}{x}=u$ and $\frac{1}{y}=v$.
7. No; $(6,0),(4,0)$

Hint: For $x+3 y=6$

x	0	3
y	2	1

For $3 x+9 y=12$

x	1	4
y	1	0

Let us draw the graph of lines using the tables obtained above.

In the graph, lines are parallel. So, the pair of equations is not consistent.
The lines intersect the x-axis at $(4,0)$ and $(6,0)$.
8. (i) Let $l=$ length of the rectangle
$b=$ breadth of the rectangle
According to question,

$$
\begin{align*}
& (l+7)(b-3)=l b \tag{i}\\
& (l-7)(b+5)=l b \tag{ii}
\end{align*}
$$

From equation (i),

$$
\Rightarrow \begin{array}{rlrl}
l b+7 b-3 l-21 & =l b \\
\Rightarrow & & 7 b-3 l & =21 \tag{iii}
\end{array}
$$

From equation (ii),

$$
\begin{array}{rlrl}
& & l b-7 b+5 l-35 & =l b \\
\Rightarrow & -7 b+5 l & =35 \tag{iv}
\end{array}
$$

Adding equations (iii) and (iv), we get

$$
2 l=56 \Rightarrow l=28 \mathrm{~m}
$$

Putting the value of l in equation (iii), we get $b=15 \mathrm{~m}$.
$\therefore l=28 \mathrm{~m}, b=15 \mathrm{~m}$.
(ii) Solution of system of linear equations in two variables.
(iii) Love for environment and human beings.

WORKSHEET- 19

1. Let unit's and ten's digit be x and y respectively.

$$
\begin{align*}
x+y & =9 \tag{i}\\
10 y+x+27 & =10 x+y \tag{ii}
\end{align*}
$$

Solving equations (i) and (ii), we have

$$
x=6, y=3
$$

Hence, the required number is $3 \times 10+6$, that is, 36 .
2. Given equation is $5(x-y)=3$
$\Rightarrow 5 x-5 y-3=0$
Let $a_{2}=10, b_{2}=10$ and $c_{2}=6$
For coincident; $\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}}$
Hence $\frac{a_{1}}{a_{2}}=\frac{5}{10}=\frac{1}{2} ; \frac{b_{1}}{b_{2}}=\frac{5}{10}=\frac{1}{2}$
and $\quad \frac{c_{1}}{c_{2}}=\frac{3}{6}=\frac{1}{2}$
$\therefore \quad \frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}}$
So required equation which can coincide is $10 x-10 y-6=0$
3. $p=6$

Hint: $\frac{3}{p}=\frac{5}{10} \Rightarrow p=6$
Note: At $p=6$, the given system has both zero and non-zero solutions.
4. $a=5, b=1$

Hint: According to the condition of infinitely many solutions, we reaches at

$$
\frac{a+b}{2}=\frac{2 a-b}{3}=\frac{21}{7} .
$$

5. $x=1, y=1$

Hint: Simplifying the given linear equations, we have

$$
\frac{7}{y}-\frac{2}{x}=5, \frac{8}{y}+\frac{7}{x}=15
$$

Now take $\frac{1}{x}=u, \frac{1}{y}=v$; and solve.
6. $x=\frac{4 a-b}{5 a}, y=\frac{-a+4 b}{5 b}$

$$
\text { Hint: } \begin{aligned}
& \frac{x}{-3 b(2 a+b)+2 b(a+2 b)} \\
&=\frac{-y}{-2 a(2 a+b)+3 a(a+2 b)} \\
&=\frac{1}{2 a \times 2 b-3 a \times 3 b}
\end{aligned}
$$

Take first and third terms as well as second and third terms and solve.
7. $a=7, b=3$

Hint: For infinitely many solutions,

$$
\frac{2}{4}=\frac{-(a-4)}{-(a-1)}=\frac{2 b+1}{5 b-1}
$$

Take $\frac{1}{2}=\frac{a-4}{a-1}$ and $\frac{1}{2}=\frac{2 b+1}{5 b-1}$.
8. Table for values of x and y as regarding equation $3 x+y-5=0$ is

x	0	1
y	5	2

Similarly table for equation $2 x-y-5=0$ is

x	0	1
y	-5	-3

Let us draw the graph of lines using the tables obtained above.

The lines intersect y-axis at $(0,5)$ and $(0,-5)$.
9. (i) Total distance $=300 \mathrm{~km}$ Let speed of train $=x \mathrm{~km} / \mathrm{h}$ and speed of bus $=y \mathrm{~km} / \mathrm{h}$

$$
\begin{array}{ll}
\text { As } & \text { speed }=\frac{\text { distance }}{\text { time }} \\
\therefore & \text { time }=\frac{\text { distance }}{\text { speed }}
\end{array}
$$

According to question,

$$
\begin{align*}
& \frac{60}{x}+\frac{240}{y}=4 \text { hours } \tag{i}\\
& \text { and } \quad \frac{100}{x}+\frac{200}{y}=4 \text { hours and } \tag{ii}\\
& 10 \text { minute }
\end{align*}
$$

From equation (i),

$$
\begin{equation*}
\frac{15}{x}+\frac{60}{y}=1 \tag{iii}
\end{equation*}
$$

From equation (ii),

$$
\begin{array}{rlrl}
& & \frac{100}{x}+\frac{200}{y}=\frac{25}{6} \text { hours } \\
\Rightarrow & \frac{4}{x}+\frac{8}{y}=\frac{1}{6} \\
\Rightarrow & \frac{1}{x}+\frac{2}{y}=\frac{1}{24} \tag{iv}
\end{array}
$$

\therefore We will solve equations (iii) and (iv) by elimination method.
Applying (iii) $-15 \times$ (iv), we get:

$$
\begin{array}{r}
\frac{15}{x}+\frac{60}{y}=1 \\
\frac{15}{x}+\frac{30}{y}=\frac{15}{24} \\
\Rightarrow \quad \frac{30}{y}=1-\frac{15}{24} \\
\Rightarrow \frac{30}{y}=\frac{9}{24} \\
\Rightarrow y=\frac{30 \times 24}{9}=10 \times 8=80 \mathrm{~km} / \mathrm{h}
\end{array}
$$

Putting the value of y in equation (iv), we get,

$$
\begin{aligned}
\frac{1}{x}+\frac{2}{80} & =\frac{1}{24} \\
\Rightarrow \quad \frac{1}{x}=\frac{1}{24}-\frac{1}{40} & =\frac{40-24}{24 \times 40}=\frac{16}{24 \times 40} \\
& =\frac{1}{60} \Rightarrow x=60 \mathrm{~km} / \mathrm{h}
\end{aligned}
$$

(ii) Solution of system of linear equations in two variables.
(iii) By opting for public transport it depicts that she is a responsible citizen, so her responsibility and rationality have been depicted here.

WORKSHEET-20

1. Since $x=a$ and $y=b$ is the solution of the given equation, then

$$
\begin{array}{r}
a+b=6 \\
a-b=2 \tag{ii}
\end{array}
$$

Adding (i) and (ii), we get

$$
\begin{aligned}
a+b+a-b & =8 \\
2 a & =8 \\
a & =4
\end{aligned}
$$

From equation (i), we get

$$
\begin{aligned}
4+b & =6 \\
b & =2
\end{aligned}
$$

Thus the values of a and b are 4 and 2 respectively.
2. For no solutions,

$$
\begin{align*}
& \frac{k}{12}=\frac{3}{k} \neq \frac{-(k-2)}{-k} \Rightarrow k= \pm 6 \\
& \text { If } \quad k=6 \\
& \frac{6}{12}=\frac{3}{6} \neq \frac{6-2}{6}=\frac{4}{6}=\frac{2}{3} \tag{True}\\
& \text { If } \quad k=-6 \\
& \frac{-6}{12}=\frac{3}{-6} \neq \frac{-8}{-6}=\frac{4}{3}
\end{align*}
$$

$\therefore \quad$ Required value of k, can be 6 or -6 .
3. Let the required equation be $a x+b y+c=0$.

Then, $\frac{a}{\sqrt{2}}=\frac{b}{-\sqrt{3}} \neq \frac{c}{-5}$
$\Rightarrow \quad \frac{a}{\sqrt{2}}=\frac{b}{-\sqrt{3}}=k$ (say)
MATTHEMATICSS-X
$\Rightarrow a=\sqrt{2} k, b=-\sqrt{3} k, k \neq-\frac{c}{5}$ any real number

Then, $\sqrt{2} k x-\sqrt{3} k y+c=0$
$\Rightarrow \quad \sqrt{2} x-\sqrt{3} y+\frac{c}{k}=0$
Putting $k=-c$, we have
$\Rightarrow \quad \sqrt{2} x-\sqrt{3} y=1$.
4. For infinite number of solutions, we have
$\frac{2}{p+q}=\frac{-3}{-(p+q-3)}=\frac{-7}{-(4 p+q)}$
On solving, $\frac{2}{p+q}=\frac{-3}{-(p+q-3)}$ and

$$
\frac{-3}{-(p+q-3)}=\frac{-7}{-(4 p+q)},
$$

we obtain $p=-5, q=-1$.
5. $x=1, y=2$

Hint: Adding and subtracting the given two equations, we have

$$
\begin{equation*}
x+y=3 \tag{i}
\end{equation*}
$$

and

$$
\begin{equation*}
x-y=-1 \tag{ii}
\end{equation*}
$$

Now, solve equations (i) and (ii).
6. $x=a^{2}, y=b^{2}$

Hint: Given system of linear equations may be written as

$$
\begin{array}{r}
b x+a y-a b(a+b)=0 \\
b^{2} x+a^{2} y-2 a^{2} b^{2}=0
\end{array}
$$

Solve these two equations by the method of cross-multiplication.
7. Let the two digits number be $10 x+y$.

Since ten's digit exceeds twice the unit's digit by 2

$$
\begin{align*}
\therefore & x & =2 y+2 \\
\Rightarrow & x-2 y-2 & =0 \tag{i}
\end{align*}
$$

Since the number obtained by interchanging the digits, i.e., $10 y+x$ is 5 more than three times the sum of the digits.

$$
\begin{align*}
\therefore & 10 y+x & =3(x+y)+5 \\
\Rightarrow & 2 x-7 y+5 & =0 \tag{ii}
\end{align*}
$$

On solving equations (i) and (ii), we obtain $x=8$ and $y=3$
$\therefore \quad 10 x+y=83$
Hence, the required two-digit number is 83 .
8. Tables for equations $3 x+y-11=0$ and $x-y-1=0$ are respectively

x	3	4
y	2	-1

and

x	0	4
y	-1	3

Let us draw the graph.

From the graph, it is clear that the lines intersect each other at a point $\mathrm{A}(3,2)$. So the solution is $x=3, y=2$.
The line $3 x+y-11=0$ intersects the y-axis at $\mathrm{B}(0,11)$ and the line $x-y-1=0$ intersects the y-axis at $C(0,-1)$. Draw the perpendicular AM from A on the y-axis to intersect it at M .
Now, in $\triangle A B C$,
base $B C=11+1=12$ units,
height $\mathrm{AM}=3$ units.

$$
\begin{aligned}
\therefore \operatorname{ar}(\triangle \mathrm{ABC}) & =\frac{1}{2} \times \text { base } \times \text { height } \\
& =\frac{1}{2} \times 12 \times 3=18 \text { sq. units }
\end{aligned}
$$

Hence, $x=3, y=2$; area $=18$ sq. units.
9. Speed of boat $=6 \mathrm{~km} / \mathrm{hr}$,

Speed of stream $=2 \mathrm{~km} / \mathrm{hr}$
Hint: Let the speed of boat in still water $=$ $x \mathrm{~km} / \mathrm{h}$ and the speed of stream $=y \mathrm{~km} / \mathrm{h}$

$$
\begin{equation*}
\frac{12}{x-y}+\frac{40}{x+y}=8 \tag{i}
\end{equation*}
$$

$$
\begin{equation*}
\left[\text { Using Time }=\frac{\text { Distance }}{\text { Speed }}\right] \tag{ii}
\end{equation*}
$$

$\frac{16}{x-y}+\frac{32}{x+y}=8$
Put $x-y=u, x+y=v$ and solve further to find x and y.

OR

Let each boy receives `\(x\) and the number of boys be \(y\). Then sum of money which is distributed is` $x y$.
Had there been 10 boys more, each would have received a rupee less,

$$
\begin{align*}
\therefore & (y+10)(x-1) & =x y \\
\Rightarrow & 10 x-y & =10 \tag{i}
\end{align*}
$$

Had there been 15 boys fewer, each would have received ` 3 more,

$$
\begin{align*}
\therefore & (y-15)(x+3) & =x y \\
\Rightarrow & 5 x-y & =-15 \tag{ii}
\end{align*}
$$

Solving (i) and (ii), we get
$x=5$ and $y=40$
$\therefore \quad x y=200$
Hence, sum of money $=` 200$
And number of boys $=40$.

WORKSHEET-21

1. In the case of no solution,

$$
\frac{3}{6}=\frac{-1}{-2} \neq \frac{-5}{-k} \Rightarrow k \neq 10 .
$$

2. $x=80, y=30$

Hint: $x+2 y=140,3 x+4 y=360$.
3. For unique solution,

$$
\frac{4}{2} \neq \frac{p}{2} \Rightarrow p \neq 4
$$

4. True.

According to the conditions of consistency,
either $\frac{\frac{2}{3}}{\frac{3}{2}} \neq \frac{-5}{-5}$ or $\frac{\frac{2}{3}}{\frac{3}{2}}=\frac{-5}{-5}=\frac{1}{3}$
Clearly, the first condition holds. Hence, the system of equations is consistent with a unique solution.
5. For infinitely many solutions,

$$
\begin{aligned}
& \frac{p+q}{3}
\end{aligned}=\frac{2(p-q)}{4}=\frac{-(5 p-1)}{-12} .
$$

6. $x=1, y=1$,

Hint: Take $\frac{1}{3 x+y}=u, \frac{1}{3 x-y}=v$
\therefore Given equation can be written as:

$$
\begin{aligned}
& & u+v & =\frac{3}{4} \\
& & & \\
& & 4 u+4 v & =3 \\
& \text { and } & \frac{1}{2} u-\frac{1}{2} v & =-\frac{1}{8} \\
\Rightarrow & & 4 u-4 v & =-1 .
\end{aligned}
$$

7. $x=\frac{-1}{2}, y=\frac{1}{3}$

Hint: Put $\frac{1}{x}=u$ and $\frac{1}{y}=v$.
8. Table for values of x and y corresponding to equation $4 x-5 y-20=0$ is

x	5	0
y	0	-4

Similarly for the equation $3 x+5 y-15=0$

x	5	0
y	0	3

Let us draw the graphs for the two equations.

As the graphs of the two lines intersect each other at the point $A(5,0)$, the required solution is $x=5, y=0$.
The graphs intersect the y-axis at $B(0,3)$ and $C(0,-4)$. Therefore, the coordinates of vertices of the triangle ABC are $\mathrm{A}(5,0)$, $B(0,3)$ and $C(0,-4)$.
Hence, the answer: $x=5, y=0$ and $(5,0)$, $(0,3),(0,-4)$.
9. Let speeds of two cars that start from places A and B be $x \mathrm{~km} / \mathrm{hr}$ and $y \mathrm{~km} / \mathrm{hr}$ respectively.
Case I: When two cars travel in same direction.
Let the cars meet at C

Distance travelled by the car that starts from A

$$
\mathrm{AC}=5 \times x
$$

Similarly distance for other car

$$
\begin{aligned}
& & \mathrm{BC} & =5 \times y \\
\therefore & & \mathrm{AC}-\mathrm{BC} & =5 x-5 y \\
\Rightarrow & & 5 x-5 y & =100
\end{aligned}
$$

$$
\begin{equation*}
\Rightarrow \quad x-y=20 \tag{i}
\end{equation*}
$$

Case II: When two cars travel in opposite directions.
Let the cars meet at D

Distance travelled by the car that starts from A

$$
\mathrm{AD}=1 \times x
$$

Similarly distance for other car

$$
\begin{array}{rlrl}
\mathrm{BD} & =1 \times y \\
\therefore & & \mathrm{AD}+\mathrm{BD} & =x+y \\
\Rightarrow & x+y & =100 \tag{ii}
\end{array}
$$

Solving equations (i) and (ii), we get

$$
x=60 \text { and } y=40
$$

Hence, speeds of two cars that start from places A and B are $60 \mathrm{~km} / \mathrm{h}$ and $40 \mathrm{~km} / \mathrm{h}$ respectively.

WORKSHEET-22

1.

$$
\begin{align*}
x-y & =0 \tag{i}\\
2 x-y & =\underline{-2} \tag{ii}\\
\hline-x & =-2
\end{align*}
$$

(Subtracting)
$\therefore \quad x=2$.
Further $y=x=2$.
2. The given equations represent to be parallel lines if

$$
\left.\begin{array}{rlrl}
& & \frac{2(k-1)}{3} & =\frac{1}{-1} \neq \frac{-1}{-1} \\
& \Rightarrow & k-1 & =-\frac{3}{2} \\
& \Rightarrow & & k
\end{array}\right)=-\frac{1}{2} .
$$

3. $m \neq 4$

Hint: $\frac{m}{2} \neq \frac{-2}{-1}$.
4. For the point of intersection of any line with x-axis, put $y=0$
$\therefore \quad-3 x+7(0)=3$
$\Rightarrow \quad x=-1$
So the required point is $(-1,0)$.
5. For inconsistency,

$$
\left.\begin{array}{l}
\\
\\
\\
\Rightarrow \quad k+2 \\
\Rightarrow \quad k+2
\end{array}\right)=\frac{6}{3} \neq \frac{-(3 k+2)^{2}}{-4}{\text { and }(3 k+2)^{2} \neq 8}^{\Rightarrow} \quad k=2 \text { and } k \neq \frac{1}{3}(\pm 2 \sqrt{2}-2) .
$$

6. Given system of equations can be written as

$$
\begin{array}{r}
2 x+3 y-18=0 \\
x-2 y-2=0 \tag{ii}
\end{array}
$$

Now,

$$
\frac{2}{1} \neq \frac{3}{-2}
$$

Hence the system has unique solution. Now, by cross-multiplication on (i) and (ii), we get

$$
\begin{aligned}
& & \frac{x}{-6-36} & =\frac{-y}{-4+18}=\frac{1}{-4-3} \\
\Rightarrow & & x & =6, y=2
\end{aligned}
$$

Thus, the solution of given system is

$$
x=6, y=2 \text {. }
$$

7. $x=5, y=-1$

Hint: Take $\frac{1}{x+y}=u, \frac{1}{x-y}=v$ and solve.
8. Let Meena received x notes of ' 50 and y notes of ` 100
Since total number of notes is 25
$\therefore \quad x+y=25$
Since the value of both types of notes is - 2000.
$\therefore \quad 50 x+100 y=2000$
$\Rightarrow \quad x+2 y=40$
Solving equations (i) and (ii), we get

$$
x=10, y=15
$$

Hence, Meena received 10 notes of `50 and 15 notes of` 100.

OR

Let the length and breadth of rectangle be x units and y units respectively.

Then area of rectangle $=x y$ sq. units
Case I. The length is increased and breadth is reduced by 2 units.
$\therefore \quad(x+2)(y-2)=x y-28$
$\Rightarrow \quad x y-4-2 x+2 y=x y-28$
$\Rightarrow \quad x-y=12$
Case II. The length is reduced by 1 unit and breadth increased by 2 units.

$$
\begin{array}{rlrl}
\therefore & (x-1)(y+2) & =x y+33 \\
\Rightarrow & x y-2-y+2 x & =x y+33 \\
2 x-y & =35 \tag{ii}
\end{array}
$$

Solving equations (i) and (ii), we get

$$
x=23 \text { and } y=11
$$

Hence, the length of the rectangle is 23 units and the breadth is 11 units.
9. We have:

$$
x+3 y=6 \Rightarrow x=6-3 y
$$

x	6	0
y	0	2

and $2 x-3 y=12 \Rightarrow x=\frac{12+3 y}{2}$

x	6	0
y	0	-4

$\therefore \quad$ Also $x=0$ mean y-axis.
\therefore Graph gives:

Points of intersection are:
$\mathrm{A}(6,0) ; \mathrm{B}(0,2), \mathrm{C}(0,-4)$.
Area of $\triangle \mathrm{ABC}=\frac{1}{2} \times$ base \times height

$$
\begin{aligned}
& =\frac{1}{2} \times \mathrm{BC} \times \mathrm{AO}=\frac{1}{2} \times 6 \times 6 \\
& =18 \mathrm{sq} . \mathrm{km} .
\end{aligned}
$$

General public should keep the park clean and should maintain the greenary.

WORKSHEET-23

1. For coincident lines,

$$
\frac{1}{2}=\frac{2}{k}=\frac{7}{14} \quad \Rightarrow \quad k=4
$$

2. Given pair of linear equations are

$$
\begin{equation*}
x-y=3 \tag{i}
\end{equation*}
$$

and $\quad 4 x+2 y=0$
From equation (i), we get $x=y+3$
Now, from equation (ii) and (iii), we get
$\Rightarrow 4(y+3)+2 y=0$
$\Rightarrow 4 y+12+2 y=0$
$\Rightarrow \quad 6 y=-12$
$\Rightarrow \quad y=-2$
From equation (iii), we get

$$
x=-2+3 \quad \Rightarrow \quad x=1
$$

Thus, the values of x and y are 1 and -2 respectively.
3. Adding the given equations, we have

$$
3 x=0 \Rightarrow x=0
$$

Substituting $x=0$ in any of the given equations, we get $y=0$
Hence, the required solution is $x=0, y=0$.
4. False.

As

$$
\frac{a_{1}}{a_{2}}=\frac{2}{4}, \frac{b_{1}}{b_{2}}=\frac{5}{10}, \frac{c_{1}}{c_{2}}=6
$$

$\therefore \quad \frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}} \neq \frac{c_{1}}{c_{2}}$
\Rightarrow They are parallel.
5. $a=-1, b=\frac{5}{2}$

Hint: $\frac{2}{2 b+1}=\frac{-(2 a+5)}{-9}=\frac{5}{15}$.
6. Put $\frac{1}{x}=u$ and $\frac{1}{y}=v$ in given system of equations.

$$
\begin{array}{r}
u+v-7=0 \\
2 u+3 v-17=0 \tag{ii}
\end{array}
$$

By cross-multiplication,

$$
\begin{array}{ll}
\frac{u}{-17+21} & =\frac{-v}{-17+14}=\frac{1}{3-2} \\
\Rightarrow & u=4, v=3 \\
\Rightarrow & x=\frac{1}{4}, y=\frac{1}{3}
\end{array}
$$

Hence, $x=\frac{1}{4}, y=\frac{1}{3}$ is the solution of the given system of equations.
7. $x=-2, y=5$ and $m=-1$

Hint: $2 x+3 y=11 \Rightarrow y=\frac{11-2 x}{3}$
Substitute this value of y in $2 x-4 y=-24$ and solve for x.
8. The given system of linear equations is

$$
\begin{align*}
& 2 x-y-5=0 \tag{i}\\
& 3 x+y-5=0 \tag{ii}
\end{align*}
$$

To draw the graph of equations (i) and (ii), we need atleast two solutions of each of the equations, which are given below:

x	0	4
$y=2 x-5$	-5	3

x	0	3
$y=-3 x+5$	5	-4

Using these points, we are drawing the graphs of lines as shown below:

From the graph, the lines intersect each other at the point $\mathrm{P}(2,-1)$. Therefore, the solution is $x=2, y=-1$.
The lines meet the y-axis at the points $Q(0,5)$ and $R(0,-5)$.
9. Let the fixed charge and additional charge for each day be `\(x\) and` y respectively. Since Saritha paid `27 for a book kept for 7 days \(\therefore \quad x+4 y=27\) Also, Susy paid` 21 for the book kept for 5 days
$\therefore \quad x+2 y=21$
Subtracting equation (ii) from (i), we get

$$
\begin{equation*}
2 y=6 \Rightarrow y=3 \tag{ii}
\end{equation*}
$$

Again substituting $y=3$ in equation (ii), we get

$$
x=15
$$

Hence, the fixed charge is `15 and additional charge for each day is` 3 .

OR

Son's age $=10$ years, father's age $=40$ years .
Hint: Let the present age of father and son be x and y years respectively.
$\therefore \quad x+5=3(y+5)$
And

$$
x-5=7(y-5) .
$$

WORKSHEET-24

1. $\angle \mathrm{A}=70^{\circ}, \angle \mathrm{B}=53^{\circ}$, $\angle \mathrm{C}=110^{\circ}, \angle \mathrm{D}=127^{\circ}$.
Hint: In a cyclic quadrilateral ABCD , $\angle \mathrm{A}+\angle \mathrm{C}=180^{\circ}$ and $\angle \mathrm{B}+\angle \mathrm{D}=180^{\circ}$.
2. $x=0, y=0$

Hint: Both lines are passing through the origin.
3. For infinite number of solutions,

$$
\begin{aligned}
& & \frac{p+q}{2} & =\frac{2 p-q}{3}=\frac{-21}{-7} \\
\Rightarrow & & p+q & =6 \text { and } 2 p-q=9 \\
\Rightarrow & & p & =5, q=1 .
\end{aligned}
$$

4. False.

Hint: As $a+5 b=-10$.
5. False, $x=4, y=1$ does not satisfy the second equation.
6. No solution

Hint: $2 x+3 y=7,6 x+9 y=11$.

Here, $\frac{2}{6}=\frac{3}{9} \neq \frac{7}{11} \quad$ Parallel lines.
7. The given system of linear equations can be written as

$$
\begin{aligned}
& p x+q y-(p-q)=0 \\
& q x-p y-(p+q)=0
\end{aligned}
$$

To solve the system for x and y, using the method of cross-multiplication, we have

$$
\begin{aligned}
\frac{x}{-q(p+q)-p(p-q)} & =\frac{-y}{-p(p+q)+q(p-q)} \\
& =\frac{1}{-p^{2}-q^{2}} \\
\Rightarrow \quad & \frac{x}{-p^{2}-q^{2}} \\
\Rightarrow & =\frac{-y}{-p^{2}-q^{2}}=\frac{1}{-p^{2}-q^{2}} \\
\Rightarrow \quad x & =1, y=-1 .
\end{aligned}
$$

8. The given system of equations can be written as

$$
\begin{array}{r}
3 x-4 y-1=0 \\
6 x-8 y+15=0 \tag{ii}
\end{array}
$$

To draw the graph, we need atleast two solutions for each of the equations (i) and (ii), which are respectively given below:

x	3	7
$y=\frac{3 x-1}{4}$	2	5

x	$\frac{3}{2}$	$\frac{11}{2}$
$y=\frac{6 x+15}{8}$	3	6

Let us draw the graph by using these points.

From the graph, it is clear that the lines are parallel. Hence, the given system of equations is inconsistent.
9. Let the fraction be $\frac{x}{y}$

On adding 1 to each of numerator and denominator, the fraction becomes $\frac{6}{5}$

$$
\begin{array}{ll}
\therefore & \frac{x+1}{y+1}=\frac{6}{5} \\
\Rightarrow & 5 x+5=6 y+6 \\
\Rightarrow & 5 x-6 y=1 \tag{i}
\end{array}
$$

Further, on subtracting 5 from each of numerator and denominator, the fraction becomes $\frac{3}{2}$
$\therefore \quad \frac{x-5}{y-5}=\frac{3}{2}$
$\Rightarrow \quad 2 x-10=3 y-15$
$\Rightarrow \quad 2 x-3 y=-5$
Solving equations (i) and (ii), we get $x=11, y=9$
Hence, the required fraction is $\frac{11}{9}$.
OR
6000, ` 5250
Hint: Let incomes of X and Y be $8 x$ and $7 x$ respectively; and expenditures of them be $19 y$ and $16 y$ respectively.

$$
\begin{array}{ll}
\therefore \quad 8 x-19 y=1250 \\
7 x-16 y=1250 \tag{ii}
\end{array}
$$

WORKSHEET-25

1. For no solution, we know that,

$$
\begin{array}{rlrl}
& & \frac{a_{1}}{a_{2}} & =\frac{b_{1}}{b_{2}} \neq \frac{c_{1}}{c_{2}} \\
\Rightarrow \quad & \frac{1}{3} & =\frac{2}{m} \neq \frac{5}{-15} \\
\Rightarrow \quad & m & =6 .
\end{array}
$$

2. Multiplying first equation by 2 and the other one by 3 and adding, we get

$$
21.8 x=10.9 \Rightarrow x=\frac{1}{2}
$$

Substituting $x=\frac{1}{2}$ in any of the given equations, we have $y=\frac{1}{3}$.

$$
\therefore \quad x=\frac{1}{2}, y=\frac{1}{3} .
$$

3. $k=6$

Hint: $\frac{k-3}{k}=\frac{3}{k}=\frac{k}{12}$.
4. The condition that the given system of equations represents parallel lines is

$$
\begin{aligned}
& & \frac{p^{2}+1}{3 p+1} & =\frac{p-2}{3} \neq \frac{5}{2} \\
\Rightarrow & & 5 p & =-5 \Rightarrow p=-1 .
\end{aligned}
$$

5. True.

The condition for parallel lines is

$$
\begin{aligned}
\frac{2}{6} & =\frac{-2}{-6} \neq \frac{-3}{5} \\
\Rightarrow \quad \frac{1}{3} & =\frac{1}{3} \neq \frac{-3}{5}
\end{aligned}
$$

The condition holds. The lines are parallel.
6. $x=a^{2}, y=b^{2}$

Hint: Put $\frac{1}{x}=u$ and $\frac{1}{y}=v$.
7. Given system of linear equations can be written as:

$$
\begin{aligned}
(a-b) x+(a+b) y-\left(a^{2}-2 a b-b^{2}\right) & =0 \\
(a+b) x+(a+b) y-\left(a^{2}+b^{2}\right) & =0
\end{aligned}
$$

By cross-multiplication,

$$
\begin{aligned}
& \frac{x}{-(a+b)\left(a^{2}+b^{2}\right)+(a+b)\left(a^{2}-2 a b-b^{2}\right)} \\
& =\frac{-y}{-(a-b)\left(a^{2}+b^{2}\right)+(a+b)\left(a^{2}-2 a b-b^{2}\right)} \\
& =\frac{1}{(a-b)(a+b)-(a+b)(a+b)} \\
& \Rightarrow \frac{x}{-2 b(a+b)^{2}}=\frac{-y}{-4 a b^{2}}=\frac{1}{-2 b(a+b)}
\end{aligned}
$$

Hence, the solution of given system of equations is

$$
x=a+b, y=-\frac{2 a b}{a+b} .
$$

8. To draw graph of the equation, we need atleast two solutions.
Two solutions of the equation
$4 x+3 y-24=0$ are mentioned in the following table:

x	0	6
y	8	0

Similarly, two solutions of each of the equations $2 x-y-2=0$ and $y+4=0$ are respectively

x	0	1
y	-2	0

and

x	0	4
y	-4	-4

Using the tables obtained above, let us draw the graph.

Observing the graph, we get the lines meet each other pairwise in $\mathrm{A}(3,4), \mathrm{B}(-1,-4)$ and $C(9,-4)$.

Hence, the vertices of the triangle $A B C$ so obtained are $A(3,4), B(-1,-4)$ and $C(9,-4)$.
Area of $\triangle \mathrm{ABC}=\frac{1}{2} \times$ base \times height

$$
=\frac{1}{2} \times 10 \times 8=40 \text { sq. units. }
$$

9. `600,` 700

Hint: Let cost price of trouser be ` x and that of shirt ${ }^{\text {' } y \text {. Then }}$

$$
\left.\begin{array}{r}
\frac{125}{100} x+\frac{110}{100} y=1520 \\
\frac{110}{100} x+\frac{125}{100} y=1535
\end{array}\right\}
$$

OR

$6 l$ of 50% and $4 l$ of 25%.
Hint: Let x litres of 50% acid and y litres of 25% acid should be mixed.

$$
\left.\begin{array}{rl}
\frac{50}{100} x+\frac{25}{100} y & =\frac{40}{100}(x+y) \\
x+y & =10
\end{array}\right\}
$$

WORKSHEET-26

1. $x=9, y=6$

Hint: $x-y=3$ and $2 x+3 y=36$.
2. Solving $3 x-2 y=4$ and $2 x+y=5$, we have $x=2, y=1$.
Now, substituting these values of x and y in $y=2 x+m$, we have $1=2 \times 2+m$
$\therefore m=-3$.
3. $\frac{3 p}{\sqrt{18}}=\frac{6}{\sqrt{24}} \neq \frac{\sqrt{50}}{\sqrt{75}}$

$$
\begin{aligned}
\Rightarrow & \frac{p}{\sqrt{2}}=\frac{\sqrt{3}}{\sqrt{2}} \neq \frac{\sqrt{2}}{\sqrt{3}} \\
\therefore & p=\sqrt{3} .
\end{aligned}
$$

4. For inconsistency,

$$
\begin{array}{rlrl}
& & \frac{\alpha}{12} & =\frac{3}{\alpha} \neq \frac{\alpha-3}{\alpha} \\
\Rightarrow \quad & \alpha^{2} & =36 \text { and } 3 \alpha \neq \alpha^{2}-3 \alpha \\
\Rightarrow \quad & \alpha & = \pm 6 \text { and } \alpha \neq 0 \text { or } \alpha \neq 6 \Rightarrow \alpha=-6 .
\end{array}
$$

5. $x=b, y=-a$

Hint: $a^{2} x-b^{2} y=a b(a+b), a x-b y=2 a b$
Solving the equations, we get $x=b, y=-a$.
6. $x=\frac{22 a}{5}, y=\frac{-26 b}{5}$

Hint: $\quad 4 b x+3 a y-2 a b=0$

$$
3 b x+a y-8 a b=0
$$

7. $3 x+2 y=800$,
$12 x+8 y=3000 ;$
Not possible
Hint: Let cost of 1 chair be `\(x\) and that of 1 table be` y.
$\therefore 3 x+2 y=800,12 x+8 y=3000$.
8. Let the actual prices of tea-set and lemonset be `\(x\) and` y respectively
According to the question,
Case I. Selling price - Cost price $=$ Profit
$\Rightarrow \quad 0.95 x+1.15 y-(x+y)=7$
$\Rightarrow \quad-0.05 x+0.15 y=7$
Case II. Selling price - Cost price $=$ Profit
$\Rightarrow \quad 1.05 x+1.10 y-(x+y)=13$
$\Rightarrow \quad 0.05 x+0.10 y=13$
Solving equations (i) and (ii), we get

$$
x=100, y=80
$$

Hence, actual prices of tea-set and lemonset are `100 and` 80 respectively.

OR

The person invested `500 at the rate of \(12 \%\) per year and` 700 at the rate of 10% per year.
Hint: Let the person invested `\(x\) at the rate of \(12 \%\) per year and` y at the rate of 10% per year
$\therefore \quad \frac{12 x}{100}+\frac{10 y}{100}=130$
$\Rightarrow \quad 6 x+5 y=6500$
and $\frac{12 y}{100}+\frac{10 x}{100}=134$
$\Rightarrow \quad 5 x+6 y=6700$
Adding and subtracting (i) and (ii), we get

$$
\begin{align*}
& x+y=1200 \tag{iii}\\
& x-y=-200 \tag{iv}
\end{align*}
$$

9. Two solutions of $6 y=5 x+10$ are:

x	-2	4
y	0	5

Two solutions of $y=5 x-15$ are

x	3	2
y	0	-5

Now, we draw the graph of the system on the same coordinate axes.

(i) From the graph, we look that the two lines intersect each other at $A(4,5)$.
(ii) The vertices of the triangle: $\mathrm{A}(4,5)$; $B(-2,0) ; C(3,0)$.
Height of $\triangle \mathrm{ABC}$ corresponding to the base BC,

$$
h=5 \text { units }
$$

and base, $\quad b=B C=5$ units
Now, $\operatorname{ar}(\triangle \mathrm{ABC})=\frac{1}{2} \times b \times h$

$$
\begin{aligned}
& =\frac{1}{2} \times 5 \times 5 \\
& =12.5 \text { square units. }
\end{aligned}
$$

WORKSHEET-27

1. For no solution,

$$
\begin{aligned}
& \frac{3}{12}=\frac{7}{2 k} \neq \frac{k}{4 k+1} \\
\therefore \quad & \frac{3}{12}=\frac{7}{2 k} \Rightarrow k=14 .
\end{aligned}
$$

2. $4^{x-y}=4^{2} \Rightarrow x-y=2$

$$
\begin{array}{r}
\begin{array}{c}
x-2 y=8 \\
-\quad+
\end{array} \tag{ii}\\
y=-6
\end{array}
$$

(Subtracting)
\therefore From $(i) \Rightarrow x=-4 \quad \therefore x+y=-10$.
3. For coincident lines

$$
\begin{array}{rlrl}
\frac{a_{1}}{a_{2}} & =\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}} \\
\Rightarrow \quad & \frac{2}{a+b} & =\frac{3}{a+b-3}=\frac{7}{4 a+b} \\
\Rightarrow \quad a-5 b & =0 .
\end{array}
$$

4. False, because the given pair of equations has infinitely many solutions at $k=40$ and no solutions at $k \neq 40$.
5. Given equations are

$$
\begin{align*}
& 2^{y-x} \cdot(x+y) \\
\Rightarrow \quad x+y & =\frac{1}{2^{y-x}} \tag{i}
\end{align*}
$$

and $(x+y)^{x-y}=2$
Substituting the value of $x+y$ from equation (i) in equation (ii), we get

$$
\begin{array}{rlrl}
& & \left(\frac{1}{2^{y-x}}\right)^{x-y} & =2 \\
\Rightarrow & & \left(2^{x-y}\right)^{x-y} & =2^{1} \\
\Rightarrow & & (x-y)^{2} & =1 \\
\Rightarrow & x-y & = \pm 1 \\
\Rightarrow & x-y & =1 \\
\text { or } & x-y & =-1 \tag{iv}
\end{array}
$$

Substituting $x-y=1$ and $x-y=-1$ in equation (ii), we get respectively

$$
\begin{align*}
& x+y=2 \tag{v}\\
& x+y=\frac{1}{2} \tag{vi}
\end{align*}
$$

and
Solving equations (iii) and (v), we have

$$
x=\frac{3}{2} ; y=\frac{1}{2} .
$$

Therefore, $x y=\frac{3}{4}$
Solving equations (iv) and (vi), we have

$$
x=-\frac{1}{4} ; y=\frac{3}{4}
$$

Therefore, $x y=-\frac{3}{16}$.
Hence, $\quad x y=\frac{3}{4}$ or $-\frac{3}{16}$.
6. Given equations can be written as

$$
\begin{array}{r}
\frac{x}{a}+\frac{y}{b}-(a+b)=0 \\
\frac{x}{a^{2}}+\frac{y}{b^{2}}-2=0
\end{array}
$$

Let us apply cross-multiplication method to solve these equations.

$$
\begin{aligned}
& \frac{x}{-\frac{2}{b}+\frac{a}{b^{2}}+\frac{1}{b}}=\frac{-y}{-\frac{2}{a}+\frac{1}{a}+\frac{b}{a^{2}}}=\frac{1}{\frac{1}{a b^{2}}-\frac{1}{b a^{2}}} \\
& \Rightarrow \quad \frac{b^{2} x}{-b+a}=\frac{-a^{2} y}{-a+b}=\frac{a^{2} b^{2}}{a-b}
\end{aligned}
$$

Taking $\quad \frac{b^{2} x}{-b+a}=\frac{a^{2} b^{2}}{a-b}$
and $\quad \frac{-a^{2} y}{-a+b}=\frac{a^{2} b^{2}}{a-b}$
$\Rightarrow x=\frac{a^{2} b^{2}(a-b)}{b^{2}(a-b)}$ and $y=\frac{(a-b) a^{2} b^{2}}{a^{2}(a-b)}$
$\Rightarrow x=a^{2}$ and $y=b^{2}$.
7. Given equations of lines are:

$$
\begin{equation*}
3 x+y+4=0 \tag{i}
\end{equation*}
$$

and $\quad 6 x-2 y+4=0$

To draw the graphs of lines (i) and (ii), we need atleast two solutions of each equation. For equation (i), two solutions are:

x	0	-3
y	-4	5

For equation (ii), two solutions are:

x	0	2
y	2	8

Let us draw the graphs of the lines (i) and (ii).

From the graph it is clear that the two lines intersect each other at a point, $\mathrm{P}(-1,-1)$, therefore, the pair of equations consistent. The solution is $x=-1, y=-1$.
8. Let the cost price of the saree and the list price of the sweater be `\(x\) and` y respectively. Now two cases arise.

Case I.

Sale price of the saree $=x+x \times \frac{8}{100}$

$$
=\frac{108}{100} x
$$

Sale price of the sweater $=y-y \times \frac{10}{100}$

$$
=\frac{90}{100} y
$$

$$
\begin{align*}
\therefore & \frac{108}{100} x+\frac{90}{100} y & =1008 \\
\Rightarrow & 108 x+90 y & =100800 \tag{i}
\end{align*}
$$

Case II.

Sale price of the saree $=x+x \times \frac{10}{100}$

$$
=\frac{110 x}{100}
$$

Sale price of the sweater $=y-y \times \frac{8}{100}$

$$
\begin{array}{rlrl}
& =\frac{92}{100} y \\
& \therefore & \frac{110}{100} x+\frac{92}{100} y & =1028 \\
\Rightarrow & 110 x+92 y & =102800 \tag{ii}
\end{array}
$$

Adding equations (i) and (ii), we get

$$
\begin{equation*}
218 x+182 y=203600 \tag{iii}
\end{equation*}
$$

Subtracting equation (i) from (ii), we get

$$
\begin{array}{rlrl}
2 x+2 y & =2000 \\
& \text { or } & 218 x+218 y & =218000
\end{array}
$$

(Multiplying by 109)
Solving equations (iii) and (iv), we have

$$
x=600 \text { and } y=400
$$

Hence, the cost price of the saree is - 600 and the list price of the sweater is - 400.

CHAPTER TEST

1. Let the two numbers of x and y, such that $x>y$.

$$
\begin{align*}
\therefore & x+y & =35 \tag{i}\\
\text { and } & x-y & =9 \tag{ii}
\end{align*}
$$

On solving (i) and (ii), we get $x=22$, and $y=13$
Hence, the two numbers are 22 and 13.
2. 6,36

Hint: Let the son's age $=x$,
And father's age $=y$
$\therefore \quad y=6 x$
and

$$
y+4=4(x+4)
$$

Solve yourself.
3. The lines are coincident

$$
\Rightarrow \quad \frac{3}{6}=\frac{-1}{-k}=\frac{8}{16} \Rightarrow k=2
$$

4. Yes.

For consistency,
either $\frac{2 a}{4 a} \neq \frac{b}{2 b}$ or $\frac{2 a}{4 a}=\frac{b}{2 b}=\frac{-a}{-2 a}$
Here only the relation $\frac{2 a}{4 a}=\frac{b}{2 b}=\frac{-a}{-2 a}$,
i.e., $\quad \frac{1}{2}=\frac{1}{2}=\frac{1}{2}$ holds.
\Rightarrow The pair is consistent.
5.

$$
\begin{align*}
21 x+47 y & =110 \\
47 x+21 y & =162 \\
\hline 68 x+68 y & =272 \\
\Rightarrow \quad x+y & =4 \tag{i}
\end{align*} \text { (Adding) }
$$

Subtracting the given equations from one another, we get

$$
\begin{array}{rlrl}
& & -26 x+26 y & =-52 \\
\Rightarrow & x-y & =2 \tag{ii}
\end{array}
$$

Solve equations (i) and (ii) to get

$$
x=3, y=1 \text {. }
$$

6. We are given

$$
\begin{align*}
\frac{2 x y}{x+y} & =\frac{3}{2} \tag{i}\\
\text { and } \quad \frac{x y}{2 x-y} & =\frac{-3}{10} \tag{ii}
\end{align*}
$$

Taking equation (i),

$$
\begin{align*}
& \frac{2 x y}{x+y} & =\frac{3}{2} \\
\Rightarrow & 3 x+3 y & =4 x y \tag{iii}
\end{align*}
$$

Now, taking equation (ii),

$$
\begin{align*}
\frac{x y}{2 x-y} & =\frac{-3}{10} \\
\Rightarrow \quad-6 x+3 y & =10 x y \tag{iv}
\end{align*}
$$

Multiplying equation (iii) by 2 and adding its result to (iv), we get

$$
\begin{aligned}
& & 9 y & =18 x y \\
\therefore & & x & =\frac{1}{2}
\end{aligned}
$$

Putting $x=\frac{1}{2}$ in equation (iv), we get

$$
\left.\begin{array}{ll}
\Rightarrow & -3+3 y \\
& =5 y \\
\therefore & y
\end{array}\right) \frac{-3}{2}
$$

Thus, $\quad x=\frac{1}{2}$ and $y=\frac{-3}{2}$.
7. The given system of equations will have infinite number of solutions if

$$
\begin{aligned}
& & \frac{1}{a-b} & =\frac{2}{a+b}=\frac{1}{a+b-2} \\
& & & \\
& & \frac{1}{a-b} & =\frac{1}{a+b-2} \\
& \text { and } & & \frac{2}{a+b}
\end{aligned}=\frac{1}{a+b-2} .
$$

Hence, the given system of equations will have infinite number of solutions, if

$$
a=3, b=1 .
$$

8. (i) Let fixed charge $=` x$
and charges for a distance of $1 \mathrm{~km}={ }^{`} y$
Now, According to question,

$$
\begin{align*}
& x+12 y=89 \tag{i}\\
& x+20 y=145 \tag{ii}
\end{align*}
$$

We will solve equations (i) and (ii) by elimination method.
Subtract equation (ii) from equation (i):

$$
-8 y=-56 \Rightarrow y=\frac{56}{8}=7
$$

Putting value of y in equation (i), we get

$$
\begin{array}{rlrl}
& x+12(7) & =89 \\
& & x & =89-84=5 \\
\therefore & & x & =5 ; y=7
\end{array}
$$

\therefore For a journey of 30 km charge paid $=x+$ $30 y=5+30(7)=5+210=` 215$.
(ii) Solution of pair of linear equations in two variables.
(iii) Love towards environment.
9. To draw the graph of a line, we are required atleast two solutions of its corresponding equation.
At $x=0,5 x-y=5$ gives $y=-5$
At $x=1,5 x-y=5$ gives $y=0$

Thus, two solutions of $5 x-y=5$ are given in the following table:

x	0	1
y	-5	0

Similarly, we can find the solution of each remaining equation as given in the following tables:

$$
x+2 y=1:
$$

x	9	1
y	-4	0

$$
6 x+y=17
$$

x	2	4
y	5	-7

Now, we will draw the graphs of the three lines on the same coordinate axes.
From the graph, it is clear that the lines form a triangle $A B C$ with vertices $A(1,0)$, $B(3,-1)$ and $C(2,5)$

QUADRATIC EQUATIONS

WORKSHEET-29

1. Since 1 is a root of $a y^{2}+a y+3=0$

$$
\begin{aligned}
& \Rightarrow a(1)^{2}+a(1)+3=0 \\
& \Rightarrow \quad a+a+3=0 \Rightarrow 2 a=-3 \\
& \Rightarrow \quad a=-\frac{3}{2}
\end{aligned}
$$

Also as 1 is a root of $y^{2}+y+b=0$

$$
\begin{aligned}
& \Rightarrow \quad(1)^{2}+(1)+b=0 \\
& \Rightarrow \quad 2+b=0 \Rightarrow b=-2 \\
& \therefore \quad a b=\left(-\frac{3}{2}\right)(-2)=3 .
\end{aligned}
$$

2. $p(1)^{2}+p(1)+3=0$

$$
\Rightarrow \quad 2 p=-3 \Rightarrow p=-\frac{3}{2}
$$

and $\quad(1)^{2}+1+q=0 \Rightarrow q=-2$

$$
\therefore \quad p q=\left(-\frac{3}{2}\right)(-2)=3
$$

3. $\frac{(-5)^{2}}{-5}+2(-5-k)=0$

$$
\begin{array}{lrl}
\Rightarrow & -10-2 k & =5 \\
\Rightarrow & -2 k & =15 \\
\Rightarrow & k & =\frac{-15}{2} .
\end{array}
$$

4. We have $x^{2}-4 k x+k=0$

This equation will have equal roots if $b^{2}-4 a c=0$
$\Rightarrow \quad 16 k^{2}-4 k=0$
$\Rightarrow \quad 4 k(4 k-1)=0$

$$
\Rightarrow \quad k=0 \text { or } k=\frac{1}{4} .
$$

5. True

Reason: The value of t for which given equation has real and equal roots are $\pm 2 \sqrt{21}$ which are irrational.
6.

$$
\begin{aligned}
\sqrt{2} x^{2}+7 x+5 \sqrt{2} & =0 \\
\Rightarrow & \sqrt{2} x^{2}+5 x+2 x+5 \sqrt{2}
\end{aligned}=0
$$

$$
\begin{array}{rr}
\Rightarrow & x(\sqrt{2} x+5)+\sqrt{2}(\sqrt{2} x+5)=0 \\
\Rightarrow & (x+\sqrt{2})(\sqrt{2} x+5)=0 \\
\Rightarrow & x+\sqrt{2}=0 \text { or } \sqrt{2} x+5=0 \\
\Rightarrow & x=-\sqrt{2} \text { or } x=\frac{-5}{\sqrt{2}} .
\end{array}
$$

7. $2 x^{2}-5 x+3=0$

$$
\begin{aligned}
& \Rightarrow \quad x^{2}-\frac{5}{2} x+\frac{3}{2}=0 \\
& \Rightarrow \quad x^{2}-\frac{5}{2} x=-\frac{3}{2}
\end{aligned}
$$

Adding both sides $\left(\frac{5}{4}\right)^{2}$, we have

$$
\begin{array}{cc}
\Rightarrow & x^{2}-\frac{5}{2} x+\left(\frac{5}{4}\right)^{2}=-\frac{3}{2}+\left(\frac{5}{4}\right)^{2} \\
\Rightarrow & \left(x-\frac{5}{4}\right)^{2}=\frac{-24+25}{16}=\frac{1}{16} \\
\Rightarrow & x-\frac{5}{4}= \pm \frac{1}{4} \\
\Rightarrow & x=\frac{5}{4}+\frac{1}{4} \text { or } \frac{5}{4}-\frac{1}{4} \\
\Rightarrow & x=\frac{3}{2} \text { or } 1 .
\end{array}
$$

8. As $a x^{2}+b x+6=0$ doesn't have 2 distinct real roots

$$
\begin{aligned}
\Rightarrow & \mathrm{D} & \leq 0 \\
\Rightarrow & b^{2}-4 a c & \leq 0 \\
\Rightarrow & b^{2}-24 a & \leq 0 \\
\Rightarrow & b^{2} & \leq 24 a \\
\Rightarrow & b^{2}+8 b & \leq 24 a+8 b \\
\Rightarrow & b^{2}+8 b & \leq 8(3 a+b) \\
\Rightarrow & \frac{1}{8}\left(b^{2}+8 b\right) & \leq 3 a+b
\end{aligned}
$$

$$
\begin{array}{ll}
\Rightarrow & \frac{1}{8}\left[(b+4)^{2}-16\right] \leq 3 a+b \\
\Rightarrow & \frac{1}{8}(b+4)^{2}-2 \leq 3 a+b
\end{array}
$$

$\therefore \quad$ Minimum value of $3 a+b=-2$.
9. Let speed of stream $=x \mathrm{~km} / \mathrm{h}$
$\therefore \quad$ upstream speed $=(18-x) \mathrm{km} / \mathrm{h}$ downstream speed $=(18+x) \mathrm{km} / \mathrm{h}$
Time taken to cover upstream distance of

$$
24 \mathrm{~km}=\frac{24}{18-x}
$$

Time taken to cover downstream distance of

$$
24 \mathrm{~km}=\frac{24}{18-x}
$$

According to question,

$$
\left.\begin{array}{rlrl}
& & \frac{24}{18-x}-\frac{24}{18+x} & =1 \\
& & & 24\left[\frac{18+x-18+x}{324-x^{2}}\right]
\end{array}=10 \begin{array}{lrl}
& =18 x & =324-x^{2} \\
\Rightarrow & & x^{2}+48 x-324
\end{array}\right)=0
$$

OR

Let size of square be x
$\therefore \quad$ No. of students in square $=x^{2}$
$\therefore \quad$ According to question,
Case I: Total students $=x^{2}+24$
Case II: Also total students $=(x+1)^{2}-25$

$$
\begin{aligned}
\therefore & & x^{2}+24 & =(x+1)^{2}-25 \\
\Rightarrow & & x^{2}+24 & =x^{2}+2 x+1-25 \\
\Rightarrow & & 2 x & =48 \Rightarrow x=24
\end{aligned}
$$

Number of students $=(24)^{2}+24$

$$
=576+24=600 .
$$

WORKSHEET-30

1. $S=3 ; P=-5$
\therefore Required equation can be: $x^{2}-\mathrm{S} x+\mathrm{P}=0$ i.e., $\quad x^{2}-3 x-5=0$.
2. Let $\alpha=2+\sqrt{3} ; \beta=2-\sqrt{3}$ be roots.

$$
\therefore \alpha+\beta=4 ; \alpha \beta=(2)^{2}-(\sqrt{3})^{2}=4-3=1
$$

\therefore Quadratic equation can be:

$$
\begin{aligned}
x^{2}-(\alpha+\beta) x+\alpha \beta & =0 \\
\text { i.e., } & x^{2}-4 x+1
\end{aligned}=0
$$

3. Since $\frac{2}{3}$ and -3 are roots of equation

Sum of roots $=\frac{2}{3}-3=\frac{-7}{m} \Rightarrow m=3$
Product of roots $=\frac{2}{3}(-3)=\frac{n}{m} \Rightarrow n=-6$.
4. No, as given equation is:

$$
\begin{array}{rlrl}
& & x^{2}+x+8 & =x^{2}-4 \\
\Rightarrow & x-12 & =0
\end{array}
$$

\therefore It is a linear equation.

5. False.

$\because \quad x^{2}-3 x+1=0$
is an equation with integral coefficients but its roots are not integers.
6. Given equation can be written as:

$$
\begin{array}{rlrl}
& & x^{2}+5 x-\left(a^{2}+3 a-2 a-6\right) & =0 \\
\Rightarrow & x^{2}+5 x-[a(a+3)-2(a+3)] & =0 \\
\Rightarrow & x^{2}+5 x-(a-2)(a+3) & =0 \\
\Rightarrow & x^{2}+(a+3) x-(a-2) x & \\
& & -(a-2)(a+3) & =0
\end{array}
$$

$\{\because$ By splitting the middle term $\}$

$$
\Rightarrow x\{x+(a+3)\}-(a-2)\{x+(a+3)\}=0
$$

$$
\Rightarrow \quad(x+a+3)(x-a+2)=0
$$

$$
\Rightarrow \quad x+a+3=0 \text { or } x-a+2=0
$$

$$
\Rightarrow \quad x=-(a+3) \text { or } x=a-2 .
$$

7. $4 x^{2}-4 a x+\left(a^{2}-b^{2}\right)=0$

$$
\begin{aligned}
\Rightarrow 4 x^{2}-[(2 a-2 b)+(2 a+2 b)] & \\
& +\left(a^{2}-b^{2}\right)=0
\end{aligned}
$$

$\Rightarrow 4 x^{2}-(2 a-2 b) x-(2 a+2 b) x+\left(a^{2}-b^{2}\right)=0$
$\Rightarrow \quad 2 x[2 x-a+b]-(a+b)[2 x-a+b]=0$
$\Rightarrow \quad[2 x-(a+b)][2 x-a+b]=0$
$\Rightarrow \quad 2 x-(a+b)=0 \quad$ or $\quad 2 x-a+b=0$
$\Rightarrow \quad x=\frac{a+b}{2} \quad$ or $x=\frac{a-b}{2}$.
OR

$$
3 x^{2}-\sqrt{6} x-\sqrt{6} x+2=0
$$

$$
\Rightarrow \sqrt{3} x(\sqrt{3} x-\sqrt{2})-\sqrt{2}(\sqrt{3} x-\sqrt{2})=0
$$

$\Rightarrow \quad(\sqrt{3} x-\sqrt{2})(\sqrt{3} x-\sqrt{2})=0$

QUADRATICEQUATIONS

$$
\begin{aligned}
& \Rightarrow \quad \sqrt{3} x-\sqrt{2}=0 \text { or } \sqrt{3} x-\sqrt{2}=0 \\
& \Rightarrow x=\frac{\sqrt{2}}{\sqrt{3}} ; \frac{\sqrt{2}}{\sqrt{3}} \Rightarrow x=\frac{\sqrt{6}}{3} ; \frac{\sqrt{6}}{3}
\end{aligned}
$$

8. $x=0 ; 2(a+b)$

Hint: Given equation is:

$$
\begin{array}{rlrl}
& & x^{2}-x(2 a+2 b)+4 a b & =4 a b \\
\Rightarrow & x^{2}-2 x(a+b) & =0 .
\end{array}
$$

9. Let Zeba's present age $=x$ yrs.
\therefore Zeba's age 5 yrs ago $=(x-5)$ yrs.
According to question $(x-5)^{2}=5 x+11$

$$
\begin{array}{crl}
\Rightarrow & x^{2}+25-10 x & =5 x+11 \\
\Rightarrow & x^{2}-15 x+14 & =0 \\
\Rightarrow & x^{2}-14 x-x+14 & =0 \\
\Rightarrow & x(x-14)-1(x-14) & =0 \\
& x=1 \text { or } x & =14
\end{array}
$$

$x=1$ is not possible
$\therefore \quad$ Present age of Zeba $=14$ yrs.

OR

Let Ist part $=x$ (larger)
$\therefore \quad$ 2nd part $=16-x$ (smaller)
According to question,

$$
\begin{aligned}
& & (16-x)^{2}+164 & =2 x^{2} \\
& & 256+x^{2}-32 x+164 & =2 x^{2} \\
& & & x^{2}+32 x-420
\end{aligned}=0
$$

WORKSHEET-31

1. $2\left(x^{2}-x\right)=3 \Rightarrow 2 x^{2}-2 x-3=0$

Here, $\quad \mathrm{D}=4+4 \times 2 \times 3=28>0$.
\Rightarrow So, roots are real and distinct.
2. For real and equal roots,

$$
\mathrm{D}=0 \Rightarrow 9 k^{2}-4 \times 4 \times 1=0 \Rightarrow k= \pm \frac{4}{3}
$$

3. No.

We have, $x^{2}-2 x+8=0$
Put $x=-2$, we get
$\Rightarrow \quad(-2)^{2}-2(-2)+8=0$
$16=0$ which is wrong.
Therefore, $x=-2$ does not satisfy given equation.
4. Given equation is $2 x^{2}-14 x-1=0$

$$
\begin{aligned}
\therefore \quad & \mathrm{D}
\end{aligned}=b^{2}-4 a c .
$$

5. True.

$\mathrm{D}=b^{2}-4 a c$
Put $b=0$ and $a=1$

$$
\mathrm{D}=-4 c
$$

As $c<0 \Rightarrow-4 c>0 \Rightarrow D>0$
\Rightarrow Roots are real
Also, sum of roots $=-\frac{b}{a}=0$
\Rightarrow Roots are numerically equal and opposite in sign.
6. Quadratic equation written as:

$$
\begin{aligned}
& (2 x)^{2}+2 \times(2 x) \times \frac{3}{4}+\left(\frac{3}{4}\right)^{2}-\left(\frac{3}{4}\right)^{2}+5=0 \\
& \Rightarrow\left(2 x+\frac{3}{4}\right)^{2}-\frac{9}{16}+5=0 \\
& \Rightarrow \quad\left(2 x+\frac{3}{4}\right)^{2}=\frac{-71}{16}<0
\end{aligned}
$$

But $\left(2 x+\frac{3}{4}\right)^{2}$ cannot be negative for any real value of x. So there is no real value of x satisfying the given equation. Therefore, the given equation has no real roots.
7. Let another root be α.

Product of roots $=2 \alpha=\frac{-6}{2} \Rightarrow \alpha=-\frac{3}{2}$
Sum of roots $=-\frac{k}{2} \Rightarrow-\frac{3}{2}+2=-\frac{k}{2}$
$\Rightarrow \quad k=-1$
Thus, $k=-1$ and another root $=-\frac{3}{2}$.
8. Let $y=\frac{x-1}{2 x-1}$
\therefore Given equation can be written as:

$$
\begin{array}{rlrl}
\Rightarrow & y+\frac{1}{y} & =\frac{5}{2} \\
\Rightarrow & 2 y^{2}+2 & =5 y \\
\Rightarrow & 2 y^{2}-5 y+2 & =0 \\
\Rightarrow & 2 y^{2}-4 y-y+2=0 \\
\Rightarrow & 2 y(y-2)-1(y-2) & =0 \\
\Rightarrow & (2 y-1)(y-2) & =0 \\
\Rightarrow & y=\frac{1}{2} \text { or } y=2 \\
\Rightarrow & \frac{x-1}{2 x-1}=\frac{1}{2} \text { or } \frac{x-1}{2 x-1} & =2 \\
\Rightarrow & 2 x-2=2 x & =1 \text { Not possible } \\
\Rightarrow & \text { or } x-1 & =4 x-2 \\
\Rightarrow & 1 & =3 x \\
\Rightarrow & x & =\frac{1}{3} .
\end{array}
$$

9. 15 hrs or 25 hrs

Hint: Let smaller tap takes x hrs to fill the tank itself.
\therefore Larger tap will take $(x-10)$ hrs to fill the tank itself.
\therefore Given situation can be expressed as:

$$
\begin{array}{cc}
& \frac{1}{x-10}+\frac{1}{x}=\frac{8}{75} \\
\Rightarrow & 4 x^{2}-115 x+375=0 \\
\Rightarrow & x=\frac{15}{4} \text { (cannot be taken) or } 25 . \\
& \text { OR }
\end{array}
$$

Let one natural number is x.
\therefore Second natural number is $x+5$.
According to question,

$$
\begin{array}{rlrl}
& & \frac{1}{x}-\frac{1}{x+5} & =\frac{1}{10} \\
\Rightarrow & & \frac{x+5-x}{x(x+5)} & =\frac{1}{10} \\
\Rightarrow & & 50 & =x(x+5) \\
\Rightarrow & & x^{2}+10 x-5 x-50 & =0 \\
\Rightarrow & x(x+10)-5(x+10) & =0 \\
\Rightarrow \quad & (x-5)(x+10) & =0
\end{array}
$$

$\Rightarrow \quad x=5$ or $x=-10$
(Reject as x is natural)
\therefore Required numbers are 5 and 10 .

WORKSHEET-32

1. $\mathrm{D}=(4 \sqrt{3})^{2}-4 \times 4 \times 3=48-48=0$

Since, the discriminant is zero, therefore, the given equation has real and equal roots.
2. $x^{2}-4 x+p=0$

For real roots, $\mathrm{D} \geq 0$
$\Rightarrow(-4)^{2}-4 \times 1 \times p \geq 0$
$\Rightarrow 16-4 p \geq 0 \Rightarrow 4 p \leq 16 \Rightarrow p \leq 4$.
3. For equal roots, $\mathrm{D}=0$
$\Rightarrow(6 k)^{2}-4 \times 9 \times 4=0$
$\Rightarrow 36 k^{2}=4 \times 36 \Rightarrow k= \pm 2$.
4. -5 must satisfy $2 x^{2}+p x-15=0$,
i.e., $2 \times 25-5 p-15=0 \Rightarrow p=7$

As $p\left(x^{2}+x\right)+k=0$, i.e., $p x^{2}+p x+k=0$ has equal roots,

$$
\begin{aligned}
& \text { But } \quad \begin{aligned}
\mathrm{D} & =0 \quad \Rightarrow \quad p^{2}-4 p k
\end{aligned}=0 \\
& p=7, \quad \therefore(7)^{2}-4(7) k
\end{aligned}=0 .
$$

5. $\quad 3 x^{2}-\sqrt{6} x-\sqrt{6} x+2=0$

$$
\begin{array}{lr}
\Rightarrow & \sqrt{3} x(\sqrt{3} x-\sqrt{2})-\sqrt{2}(\sqrt{3} x-\sqrt{2})=0 \\
\Rightarrow & \quad(\sqrt{3} x-\sqrt{2})(\sqrt{3} x-\sqrt{2})=0 \\
\Rightarrow & \sqrt{3} x-\sqrt{2}=0 \text { or } \sqrt{3} x-\sqrt{2}=0 \\
\Rightarrow & x=\frac{\sqrt{2}}{\sqrt{3}} ; \frac{\sqrt{2}}{\sqrt{3}} \Rightarrow x=\frac{\sqrt{6}}{3} ; \frac{\sqrt{6}}{3} .
\end{array}
$$

6. $2 \sqrt{2} x^{2}+\sqrt{15} x+\sqrt{2}=0$

$$
\begin{array}{ll}
\Rightarrow & x^{2}+\frac{\sqrt{15}}{2 \sqrt{2}} x+\frac{1}{2}=0 \\
\Rightarrow & x^{2}+\frac{\sqrt{15}}{2 \sqrt{2}} x=-\frac{1}{2}
\end{array}
$$

Add $\left(\frac{15}{4 \sqrt{2}}\right)^{2}$ to both sides,

$$
\left.\begin{array}{rlrl}
& \Rightarrow & x^{2}+\frac{\sqrt{15}}{2 \sqrt{2}} x+\left(\frac{\sqrt{15}}{4 \sqrt{2}}\right)^{2} & =-\frac{1}{2}+\left(\frac{\sqrt{15}}{4 \sqrt{2}}\right)^{2} \\
& \Rightarrow & \left(x+\frac{\sqrt{15}}{4 \sqrt{2}}\right)^{2} & =-\frac{1}{2}+\frac{15}{32} \\
& =\frac{-16+15}{32} \\
& \therefore & & \left(x+\frac{\sqrt{15}}{4 \sqrt{2}}\right)^{2}
\end{array}\right)=-\frac{1}{32}
$$

which is not possible as square of any real number can't be negative.
\therefore No real roots possible.
7. $x=\frac{1}{2}$ or $\frac{4}{3}$

Hint: Let $y=\frac{2 x-3}{x-1} \quad \therefore \quad \frac{1}{y}=\frac{x-1}{2 x-3}$
Given equation becomes: $y-\frac{4}{y}=3$
Now solve.
8. Let the numbers are : $x, x+1, x+2$.

According to question,

$$
\begin{array}{cc}
& (x+1)^{2}=(x+2)^{2}-x^{2}+60 \\
\Rightarrow & x^{2}+2 x+1=x^{2}+4 x+4-x^{2}+60 \\
\Rightarrow & x^{2}+2 x-4 x+1-64=0 \\
\Rightarrow & x^{2}-2 x-63=0 \\
\Rightarrow & x^{2}-9 x+7 x-63=0 \\
\Rightarrow & x(x-9)+7(x-9)=0 \\
\Rightarrow & (x-9)(x+7)=0 \\
\Rightarrow & x-9=0 \text { or } x+7=0 \\
\Rightarrow & x=9 \text { or } x=-7
\end{array}
$$

as x has to be a natural number \therefore Reject $x=-7$
\Rightarrow Required numbers are : 9, 10, 11.
9. (i) Let the cost price of each glass plate be x and the total number of glass plates bought be n.
Then, total CP $=n x=900$
This gives, $x=\frac{900}{n}$
\therefore Selling price of each glass plate $={ }^{`}(x+2)$
And number of glass plates sold $=n-5$
$\therefore \quad$ Total SP $=(n-5)(x+2)$

Now, SP - CP = Profit

$$
\begin{aligned}
& \therefore \quad(n-5)(x+2)-n x=80 \\
& \Rightarrow \quad n x+2 n-5 x-10-n x=80 \\
& \Rightarrow \quad 2 n-5 x=90 \\
& \Rightarrow 2 n-\frac{5 \times 900}{n}=90 \Rightarrow 2 n^{2}-4500=90 n \\
& \Rightarrow \quad n^{2}-45 n-2250=0 \\
& \Rightarrow \quad n^{2}-75 n+30 n-2250=0 \\
& \Rightarrow \quad n(n-75)+30(n+75)=0 \\
& \Rightarrow \quad(n-75)(n+30)=0 \\
& \Rightarrow \quad n=75 \text { or } n=-30
\end{aligned}
$$

$n=-30$ is not possible $\quad \therefore n=75$.
Thus the trader bought 75 glass plates.
(ii) Self-reliance being industrious and rationality.

WORKSHEET-33

1. For equal roots, $\mathrm{D}=0$

$$
\therefore \quad b^{2}-4 a c=0 \Rightarrow c=\frac{b^{2}}{4 a} \text {. }
$$

2. Sum of roots $=-\frac{-l}{1} \Rightarrow l+m=l$
$\Rightarrow m=0$ and l can take any real value, e.g., $m=0, l=-2$.

Product of roots $=\frac{m}{1} \Rightarrow l m=m$
$\Rightarrow m(l-1)=0 \Rightarrow m=0, l=1$.
3. For real roots:
$\mathrm{D} \geq 0$

$$
\begin{array}{rr}
\Rightarrow & b^{2}-4 a c \geq 0 \\
\Rightarrow & k^{2}-4(5)(5) \geq 0 \\
\Rightarrow & k^{2}-100 \geq 0 \\
\Rightarrow & (k-10)(k+10) \geq 0 \\
\Rightarrow & k \leq-10 \text { or } k \geq 10 .
\end{array}
$$

4. $p x(x-2)+6=0$

$$
\Rightarrow \quad p x^{2}-2 p x+6=0
$$

For equal roots: $\mathrm{D}=0$
$\Rightarrow \quad b^{2}-4 a c=0$
$\Rightarrow(-2 p)^{2}-4(p)(6)=0$
$\Rightarrow \quad 4 p^{2}-24 p=0$
$\Rightarrow \quad 4 p(p-6)=0$
$\Rightarrow \quad p=0$ or $p=6$ as $p \neq 0$
$\Rightarrow \quad p=6$.
5.

$$
\sqrt{3} x^{2}+10 x+7 \sqrt{3}=0
$$

$$
\Rightarrow \quad x^{2}+\frac{10}{\sqrt{3}} x+7=0
$$

$$
\begin{aligned}
& \Rightarrow \quad\left(x+\frac{5}{\sqrt{3}}\right)^{2}-\frac{25}{3}+7=0 \\
& \Rightarrow \quad\left(x+\frac{5}{\sqrt{3}}\right)^{2}-\left(\frac{2}{\sqrt{3}}\right)^{2}=0 \\
& \Rightarrow \quad\left(x+\frac{5}{\sqrt{3}}+\frac{2}{\sqrt{3}}\right)\left(x+\frac{5}{\sqrt{3}}-\frac{2}{\sqrt{3}}\right)=0 \\
& \Rightarrow x=-\frac{7}{\sqrt{3}},-\sqrt{3} .
\end{aligned}
$$

6. $\mathrm{D}=(8 a b)^{2}-4\left(3 a^{2}\right)\left(4 b^{2}\right)$

$$
=64 a^{2} b^{2}-48 a^{2} b^{2}=16 a^{2} b^{2}=(4 a b)^{2} \geq 0
$$

$$
\therefore x=\frac{-b \pm \sqrt{\mathrm{D}}}{2 a}=\frac{-8 a b \pm 4 a b}{2 \times 3 a^{2}}
$$

$$
=\frac{-12 a b}{6 a^{2}} \text { or } \frac{-4 a b}{6 a^{2}}
$$

$$
\Rightarrow x=\frac{-2 b}{a} \text { or } x=\frac{-2 b}{3 a} .
$$

7. $p=14$

Hint: For real and equal roots

$$
\therefore \text { Take } \begin{aligned}
\mathrm{D} & =0 \\
a & =p-12 \\
b & =2(p-12) \\
c & =2 \\
b^{2}-4 a c & =0
\end{aligned}
$$

8.

$$
\begin{array}{rlrl}
& \frac{4}{x}-3 & =\frac{5}{2 x+3} \\
\Rightarrow & \frac{4-3 x}{x} & =\frac{5}{2 x+3} \\
\Rightarrow & (4-3 x)(2 x+3) & =5 x \\
\Rightarrow & 8 x+12-6 x^{2}-9 x & =5 x \\
\Rightarrow & 6 x^{2}+6 x-12=0 \\
\Rightarrow & x^{2}+x-2=0 \\
\Rightarrow & x^{2}+2 x-x-2=0 \\
\Rightarrow & x(x+2)-(x+2)=0 \\
\Rightarrow & & (x-1)(x+2)=0 \\
\Rightarrow & x=1 \text { or } x=-2 .
\end{array}
$$

9. Son $=2$ years; Father $=22$ years

Hint: Let boy's present age $=x$
$\therefore \quad$ Father's present age $=24-x$

According to question,

$$
\frac{1}{4} x .(24-x)=x+9
$$

Now solve.

OR

(i) Let the number of arrows Arjun used be n.
Number of arrows to cut down arrow used by Bheeshma $=\frac{n}{2}$
Number of arrows used to kill the rath driver $=6$
Number of arrows to knock down the rath, flag and bow of Bheeshma
$=1+1+1=3$
Number of arrow used in arrow bed
$=4 \sqrt{n}+1$
Hence number of arrows Arjun used in all
$=\frac{n}{2}+6+3+4 \sqrt{n}+1=10+\frac{n}{2}+4 \sqrt{n}$
This must be equal to the number of arrows we supposed
$\therefore 10+\frac{n}{2}+4 \sqrt{n}=n$
$\Rightarrow 20+n+8 \sqrt{n}=2 n \Rightarrow 8 \sqrt{n}=n-20$
$\Rightarrow \quad 64 n=n^{2}-40 n+400$
$\Rightarrow \quad n^{2}-104 n+400=0$
$\Rightarrow \quad n^{2}-4 n-100 n+400=0$
$\Rightarrow \quad n(n-4)-100(n-4)=0$
$\Rightarrow \quad(n-4)(n-100)=0 \Rightarrow n=4,100$
$n \neq 4$ as 6 arrows have already been used to kill the rath driver.
$\therefore n=100$
Hence, the required number of arrows is 100.
(ii) Forming and solving a quadratic equation.
(iii) Courage and mutual respect.

WORKSHEET-34

1. We have, $k x^{2}-2 k x+6=0$

For real, equal roots $\quad \mathrm{D}=0$

$$
\begin{array}{ll}
\Rightarrow & 4 k^{2}-24 k=0 \\
\Rightarrow & 4 k(k-6)=0
\end{array}
$$

$$
\begin{array}{lr}
\Rightarrow & k=0 \text { or } k=6 \\
\therefore & k=6 .
\end{array}
$$

2. We have $3 x^{2}-2 x+\frac{1}{3}=0$

$$
\begin{aligned}
& a=3, b=-2, c=\frac{1}{3} \\
& D=b^{2}-4 a c \\
& D=(-2)^{2}-4 \times 3 \times \frac{1}{3} \\
& \mathrm{D}=4-4=0
\end{aligned}
$$

3. If $x=-2$ is a root of the equation, then

$$
\begin{aligned}
& k(-2)^{2}+5(-2)-3 k=0 \Rightarrow k-10=0 \\
& \Rightarrow k=10
\end{aligned}
$$

4. Yes.

$$
\begin{aligned}
\text { At } x=\frac{2}{3}, 9 x^{2}-3 x-2 & =9\left(\frac{2}{3}\right)^{2}-3\left(\frac{2}{3}\right)-2 \\
& =4-4=0 \\
\text { At } x=-\frac{1}{3}, 9 x^{2}-3 x-2 & =9\left(-\frac{1}{3}\right)^{2}-3\left(-\frac{1}{3}\right)-2 \\
& =2-2=0
\end{aligned}
$$

Clearly, both the values of $x=\left(\frac{2}{3},-\frac{1}{3}\right)$ satisfy the equation $9 x^{2}-3 x-2=0$, so, $x=\left(\frac{2}{3},-\frac{1}{3}\right)$ are the roots of it.
5. Consider, $\quad \alpha+\beta=4$

$$
\begin{aligned}
\Rightarrow & 2-\sqrt{3}+\beta & =4 \\
\Rightarrow & & \beta=2+\sqrt{3}
\end{aligned}
$$

\therefore Equation is: $(x-2+\sqrt{3})(x-2-\sqrt{3})=0$

$$
\begin{array}{lr}
\Rightarrow & (x-2)^{2}-(\sqrt{3})^{2}=0 \\
\Rightarrow & x^{2}+4-4 x-3=0 \\
\Rightarrow & x^{2}-4 x+1=0
\end{array}
$$

6. $\frac{x-1+2 x-4}{(x-2)(x-1)}=\frac{6}{x}$

$$
\begin{array}{lrl}
\Rightarrow & (3 x-5) x & =6\left(x^{2}-3 x+2\right) \\
\Rightarrow & 3 x^{2}-5 x & =6 x^{2}-18 x+12 \\
\Rightarrow & 3 x^{2}-13 x+12 & =0 \\
\Rightarrow & 3 x^{2}-9 x-4 x+12=0 \\
\Rightarrow & 3 x(x-3)-4(x-3)=0 \\
\Rightarrow & & (3 x-4)(x-3)=0 \\
& & \\
& x=\frac{4}{3} \text { or } x=3 .
\end{array}
$$

7. Discriminant for $\sqrt{3} x^{2}+10 x-8 \sqrt{3}=0$ is given by

$$
\begin{aligned}
\mathrm{D} & =10^{2}-4 \times \sqrt{3} \times(-8 \sqrt{3}) \\
& =100+96=196 \\
\Rightarrow \mathrm{D} & >0
\end{aligned}
$$

As $\mathrm{D}>0$, the given equation has real roots.
Now, $\quad x=\frac{-10 \pm \sqrt{196}}{2 \sqrt{3}}=\frac{-10 \pm 14}{2 \sqrt{3}}$
$\Rightarrow \quad x=-4 \sqrt{3}, \frac{2}{\sqrt{3}}$
Thus, the given equation has real roots which are $-4 \sqrt{3}$ and $\frac{2}{\sqrt{3}}$.
8.

$$
x^{2}-4 a x-b^{2}+4 a^{2}=0
$$

$$
\begin{aligned}
& \Rightarrow \quad x^{2}-(2 a+b) x-(2 a-b) x-b^{2}+4 a^{2}=0 \\
& \Rightarrow \quad x[x-(2 a+b)]-(2 a-b)[x-(2 a+b)]=0 \\
& \Rightarrow \quad[x-(2 a+b)][x-(2 a-b)]=0 \\
& \Rightarrow \quad x=2 a+b \text { or } x=2 a-b
\end{aligned}
$$

OR

Let first number $=x$
\therefore 2nd number $=8-x$
\therefore According to questions, $x(8-x)=15$
$\Rightarrow \quad 8 x-x^{2}=15$
$\Rightarrow \quad x^{2}-8 x+15=0$
$\Rightarrow \quad x^{2}-5 x-3 x+15=0$
$\Rightarrow \quad x(x-5)-3(x-5)=0$
$\Rightarrow \quad(x-5)(x-3)=0$
$\Rightarrow \quad x=5$ or $x=3$
\therefore two numbers are: 3 and 5 .
9. (i) Let usual speed $=x \mathrm{~km} / \mathrm{hr}$

As distance $=$ Time \times Speed

$$
\begin{array}{rlrl}
\therefore & \text { Usual time } & =\frac{1500}{x} \\
& \text { New speed } & =(x+250) \\
\therefore & & \text { New time } & =\frac{1500}{(x+250)}
\end{array}
$$

According to question
Usual time of flight - New time of flight

$$
\begin{aligned}
& =30 \text { minutes }=\frac{1}{2} h \\
\Rightarrow \quad \frac{1500}{x}-\frac{1500}{x+250} & =\frac{1}{2} \\
\Rightarrow 1500\left[\frac{x+250-x}{x(x+250)}\right] & =\frac{1}{2}
\end{aligned}
$$

$$
\begin{array}{rr}
\Rightarrow & 3000 \times 250=x(x+250) \\
\Rightarrow & x^{2}+250 x-750000=0 \\
\Rightarrow & x^{2}+1000 x-750 x-750000=0 \\
\Rightarrow & x(x+1000)-750(x+1000)=0 \\
\Rightarrow & (x-750)(x+1000)=0 \\
\Rightarrow & x=750 \text { or } x=-1000 \quad \text { (Rejected) }
\end{array}
$$

\therefore Usual speed $=750 \mathrm{~km} / \mathrm{h}$
(ii) Formation and solving a quadratic equation by splitting the middle term.
(iii) Punctuality of pilot is reflected in this problem.

WORKSHEET-35

1. For real roots, $\mathrm{D} \geq 0$

$$
\begin{aligned}
& \therefore(-3 p)^{2}-4 \times 4 \times 9 \geq 0 \Rightarrow 9 p^{2} \geq 4 \times 4 \times 9 \\
& \Rightarrow p \geq 4 \text { or } p \leq-4 .
\end{aligned}
$$

2. $x=\frac{5}{2}$ must satisfy $2 x^{2}-8 x-m=0$

$$
\therefore \quad 2\left(\frac{5}{2}\right)^{2}-8\left(\frac{5}{2}\right)-m=0 \Rightarrow m=-\frac{15}{2} .
$$

3. Let $y=\sqrt{6+\sqrt{6+\sqrt{6+\sqrt{6+\ldots .}}}}$.

$$
\begin{aligned}
\therefore y=\sqrt{6+y} & \Rightarrow \quad y^{2}-y-6=0 \\
& \Rightarrow(y-3)(y+2)=0 \\
& \Rightarrow y=3 \text { or }-2 \text { (Reject). }
\end{aligned}
$$

4. $4 x^{2}+4 \sqrt{3} x+3=0 \Rightarrow x^{2}+\sqrt{3} x+\frac{3}{4}=0$

$$
\begin{aligned}
& \Rightarrow \quad x^{2}+\sqrt{3} x+\left(\frac{\sqrt{3}}{2}\right)^{2}-\left(\frac{\sqrt{3}}{2}\right)^{2}+\frac{3}{4}=0 \\
& \Rightarrow \quad\left(x+\frac{\sqrt{3}}{2}\right)^{2}=0 \quad \Rightarrow \quad x+\frac{\sqrt{3}}{2}=0 \\
& \Rightarrow \quad x=-\frac{\sqrt{3}}{2}
\end{aligned}
$$

5. $\mathrm{D}=b^{2}-4 a c$

$$
\begin{aligned}
& =(\sqrt{3}+1)^{2}-4(1)(\sqrt{3}) \\
& =3+1+2 \sqrt{3}-4 \sqrt{3} \\
& =4-2 \sqrt{3}=(\sqrt{3}-1)^{2}>0
\end{aligned}
$$

$$
\therefore x=\frac{-b \pm \sqrt{D}}{2 a} \Rightarrow x=\frac{\sqrt{3}+1 \pm(\sqrt{3}-1)}{2}
$$

$$
x=\sqrt{3}, 1
$$

6. Given equation is
$\sqrt{\frac{x^{2}+2}{x^{2}-2}}+6 \sqrt{\frac{x^{2}-2}{x^{2}+2}}=5$
Putting $y=\sqrt{\frac{x^{2}+2}{x^{2}-2}}$ so that $\frac{1}{y}=\sqrt{\frac{x^{2}-2}{x^{2}+2}}$, equation (i) reduces to

$$
\begin{aligned}
y+\frac{6}{y}=5 & \Rightarrow y^{2}-5 y+6=0 \\
\Rightarrow \quad(y-3)(y-2) & =0 \Rightarrow y=2 \text { or } 3
\end{aligned}
$$

Case I. If $y=2$

$$
\begin{aligned}
& \sqrt{\frac{x^{2}+2}{x^{2}-2}}=2 \Rightarrow x^{2}+2=4 x^{2}-8 \\
\Rightarrow & 3 x^{2}=10 \Rightarrow x= \pm \sqrt{\frac{10}{3}}
\end{aligned}
$$

Case II. If $y=3$

$$
\begin{aligned}
& \quad \sqrt{\frac{x^{2}+2}{x^{2}-2}}=3 \Rightarrow x^{2}+2=9 x^{2}-18 \\
& \Rightarrow \quad 8 x^{2}=20 \Rightarrow x= \pm \sqrt{\frac{5}{2}} \\
& \text { Hence, } \quad x= \pm \sqrt{\frac{10}{3}}, \pm \sqrt{\frac{5}{2}} .
\end{aligned}
$$

7. $(k+4) x^{2}+(k+1) x+1=0$ will have equal roots if

$$
\begin{array}{rlrl}
& \mathrm{D} & =0 \\
\Rightarrow & b^{2}-4 a c & =0 \\
\Rightarrow & (k+1)^{2}-4(k+4)(1) & =0 \\
\Rightarrow & k^{2}+2 k+1-4 k-16 & =0 \\
\Rightarrow & k^{2}-2 k-15 & =0 \\
\Rightarrow & k^{2}-5 k+3 k-15 & =0 \\
\Rightarrow & k(k-5)+3(k-5) & =0 \\
\Rightarrow & & (k+3)(k-5) & =0 \\
\Rightarrow & k=-3 \text { or } k & =5
\end{array}
$$

8.25 min and 20 min .

Hint: Use: $\frac{1}{x}+\frac{1}{x+5}=\frac{9}{100}$.

OR

$750 \mathrm{~km} / \mathrm{h}$
Hint: Use: $=\frac{1500}{x}-\frac{1500}{x+250}=\frac{1}{2}$
where $x=$ usual speed.

QUADRATIC EQUATIONS

WORKSHEET-36

1. For equal roots, $\mathrm{D}=0$

$$
\begin{aligned}
& \therefore 4\left(a^{2} c^{2}+b^{2} d^{2}+2 a b c d\right)-4\left(a^{2} c^{2}+a^{2} d^{2}+b^{2} c^{2}\right. \\
& \left.\quad+\quad+b^{2} d^{2}\right)=0 \\
& \Rightarrow 8 a b c d=4\left(a^{2} d^{2}+b^{2} c^{2}\right) \\
& \Rightarrow a^{2} d^{2}+b^{2} c^{2}-2 a b c d=0 \\
& \Rightarrow(a d-b c)^{2}=0 \Rightarrow a d=b c .
\end{aligned}
$$

2. Let us find the discriminant of equation

$$
\begin{aligned}
& x^{2}-4 x+3 \sqrt{2}=0 . \\
& \mathrm{D}=(-4)^{2}-4 \times 1 \times 3 \sqrt{2}=16-12 \sqrt{2} \\
& \quad=16-16.97 \\
& \Rightarrow \mathrm{D}
\end{aligned} \mathrm{<} 0 .
$$

Therefore, $x^{2}-4 x+3 \sqrt{2}$ has no real roots.
3. Given equation is:

$$
\begin{aligned}
x^{2}+a x-4 & =0 \\
\mathrm{D} & =b^{2}-4 a c \\
& =a^{2}-4(-4) \\
& =a^{2}+16>0
\end{aligned}
$$

As $\mathrm{D}>0$, two real and distinct roots exist.
4. For no real roots, $\mathrm{D}<0$

$$
\begin{aligned}
& \therefore k^{2}-4 \times 1 \times 1<0 \Rightarrow k^{2}-2^{2}<0 \\
& \Rightarrow(k-2)(k+2)<0 \Rightarrow-2<k<2 .
\end{aligned}
$$

5. Let the required whole number be x.

$$
\begin{aligned}
\therefore & x-20=69 \times \frac{1}{x} \\
\Rightarrow & x^{2}-20 x=69 \\
\Rightarrow & x^{2}-20 x-69=0 \\
\Rightarrow & x^{2}-(23-3) x-23 \times 3=0 \\
\Rightarrow & (x-23)(x+3)=0 \\
\Rightarrow & x=23 \text { or } x=-3
\end{aligned}
$$

But -3 is not a whole number

$$
\therefore \quad x=23 .
$$

6. $x=\frac{2 a+b}{3}, \frac{a+2 b}{3}$

Hint: See solved example 5(ii).
7. $(x-5)(x-6)=\frac{25}{(24)^{2}}$
$\Rightarrow \quad x^{2}-11 x=\frac{25}{(24)^{2}}-30$
Add $\left(\frac{11}{2}\right)^{2}$ to both sides.

$$
\begin{aligned}
& \Rightarrow x^{2}-11 x+\left(\frac{11}{2}\right)^{2}=\frac{25}{(24)^{2}}-30+\left(\frac{11}{2}\right)^{2} \\
& \Rightarrow\left(x-\frac{11}{2}\right)^{2}=\frac{25}{(24)^{2}}-30+\frac{121}{4} \\
& =\frac{25}{(24)^{2}}+\frac{1}{4} \\
& =\frac{25+144}{576}=\left(\frac{13}{24}\right)^{2} \\
& \Rightarrow \quad x-\frac{11}{2}= \pm \frac{13}{24} . \Rightarrow x=\frac{11}{2} \pm \frac{13}{24} \\
& \Rightarrow \quad x=\frac{132 \pm 13}{24} \Rightarrow x=\frac{145}{24} ; \frac{119}{24} \\
& \Rightarrow \quad x=6 \frac{1}{24} ; 4 \frac{23}{24} .
\end{aligned}
$$

8. Let the tap of larger diameter takes x hours to fill the tank. Therefore, the other tap will take $(x+10)$ hours to fill the same tank. The tap of larger diameter will fill the tank $\frac{1}{x}$ part in one hour and the other one will fill $\frac{1}{x+10}$ part in the same time.
According to the question,

$$
\left.\begin{array}{rlrl}
& & \frac{1}{x}+\frac{1}{x+10} & =\frac{1}{9 \frac{3}{8}} \\
& \Rightarrow & \frac{2 x+10}{x(x+10)} & =\frac{8}{75} \\
\Rightarrow & & 4 x^{2}-35 x-375 & =0 \\
\Rightarrow & & 4 x^{2}-60 x+25 x-375 & =0 \\
& \Rightarrow & & x(x-15)+25(x-15)
\end{array}\right)=0
$$

Rejecting $x=-\frac{25}{4}$ hours due to negative time, we have
$x=15$ hours and $x+10=25$ hours.
Hence the tap of larger diameter and of smaller diameter can separately fill the tank in 15 hrs and 25 hrs respectively.

OR

Let the breadth of the rectangular park be b metres.
Then its length $=(b+3)$ metres
Area of the rectangular park $=b(b+3) \mathrm{sq} \cdot \mathrm{m}$ Area of the triangular park

$$
\begin{aligned}
& =\frac{1}{2} \times \text { base } \times \text { altitude } \\
& =\frac{1}{2} \times b \times 12=6 b
\end{aligned}
$$

Now,
area of rectangular park-area of triangular park $=4$

$$
\left.\begin{array}{rlrl}
& & b(b+3)-6 b & =4 \\
\Rightarrow & & b^{2}+3 b-6 b-4 & =0 \\
& \Rightarrow & b^{2}-3 b-4 & =0 \\
& \Rightarrow & & (b-4)(b+1)
\end{array}\right)=0 \Rightarrow b=-1,4
$$

Reject $b=-1$ as breadth is not possible in negative.
$\therefore b=4 \mathrm{~m}$ and $b+3=7 \mathrm{~m}$
Hence, length $=7 \mathrm{~m}$ and breadth $=4 \mathrm{~m}$.
9. Let Denominator $=x$
\therefore Numerator $=x-3$
\therefore Fraction $=\frac{x-3}{x}$
A.T.Q. $\frac{x-3}{x+1}=\frac{x-3}{x}-\frac{1}{15}$
$\Rightarrow \quad \frac{x-3}{x}-\frac{x-3}{x+1}=\frac{1}{15}$
$\Rightarrow(x-3)\left[\frac{x+1-x}{x(x+1)}\right]=\frac{1}{15}$
$\Rightarrow \quad(x-3) \times 15=x^{2}+x$
$x^{2}-14 x+45=0$
$\Rightarrow x^{2}-9 x-5 x+45=0$
$\Rightarrow x(x-9)-5(x-9)=0$

$$
(x-5)(x-9)=0
$$

$$
x=5 \text { or } x=9 \quad\{\because \text { Reject } x=9\}
$$

\therefore Fraction is $\frac{2}{5}$
($x=9$ doesn't satisfy given criteria as if $x=9$ then fraction is $\frac{6}{9}=\frac{2}{3}$
\therefore Numerator is not less than denominator by 3).

OR

3 hr 30 min .
Hint: Let average speed $=x \mathrm{~km} / \mathrm{h}$
\therefore Distance $=2800 \mathrm{~km}$
\therefore Original time (duration) $=\frac{2800}{x}$
\therefore New time $=\frac{2800}{x-100}$
$\therefore \frac{2800}{x-100}-\frac{2800}{x}=\frac{1}{2}$
Now solve.

WORKSHEET-37

1. For real roots, $\mathrm{D} \geq 0$
$\therefore(-k)^{2}-4 \times 5 \times 1 \geq 0 \quad \Rightarrow k^{2} \geq 20$
$\Rightarrow k \leq-\sqrt{20}$ or $k \geq \sqrt{20}$.
2. $\mathrm{D}=(4 \sqrt{3})^{2}-4 \times 3 \times 4$.

$$
=48-48=0
$$

\Rightarrow Two roots are real and equal.
3. $3(2)^{2}-2 p(2)+2 q=0$
and $3(3)^{2}-2 p(3)+2 q=0$
$\Rightarrow 4 p-2 q=12$ and $6 p-2 q=27$
$\Rightarrow p=\frac{15}{2}, q=9$.

4. False.

There can be quadratic equation which have no real roots, e.g. $x^{2}+2 x+7=0$; This equation has no real roots because $\mathrm{D}=-24<0$.
5. No.

Let their ages be x years and y years.
Then

$$
\begin{equation*}
x+y=20 \tag{i}
\end{equation*}
$$

And $(x-4)(y-4)=48$
Consider equation (ii).

$$
\begin{equation*}
x y=112 \tag{iii}
\end{equation*}
$$

From equations (i) and (iii), we have

$$
x^{2}-20 x+112=0
$$

Here,
D <0
Hence, the given situation is not possible.
6.

$$
\begin{aligned}
\mathrm{D} & =b^{2}-4 a c \\
& =16 a^{4}-4(4)\left(a^{4}-b^{4}\right) \\
& =16 a^{4}-16 a^{4}+16 b^{4}=\left(4 b^{2}\right)^{2} \geq 0 \\
\therefore \quad x & =\frac{-b \pm \sqrt{\mathrm{D}}}{2 a}=\frac{4 a^{2} \pm 4 b^{2}}{2 \times 4} \\
\Rightarrow x & =\frac{a^{2}+b^{2}}{2} ; \frac{a^{2}-b^{2}}{2}
\end{aligned}
$$

7. $(\alpha-3) x^{2}+4(\alpha-3)=4$
$\Rightarrow \quad(\alpha-3) x^{2}+4(\alpha-3)-4=0$
Since equation (i) has real and equal roots,
$\therefore \quad$ Discriminant $(D)=0$

$$
\begin{array}{llr}
\Rightarrow & & b^{2}-4 a c=0 \\
\therefore & a & =\alpha-3, b=0 \\
& c & =4(\alpha-3)-4=4(\alpha-4) \\
\therefore & D & =0-4(\alpha-3) \times 4(\alpha-4)=0 \\
\Rightarrow & \alpha & =3 \text { or } \alpha=4
\end{array}
$$

But $\alpha \neq 3$, i.e., $\alpha-3 \neq 0$, as $(\alpha-3)$ is the constant of the leading term.
Hence, $\alpha=4$.
8. Yes; 5 m and 12 m

Hint: Let distance of pole P from gate B be $x \mathrm{~m}$ and from $\mathrm{A},(x+7) \mathrm{m}$.
Therefore, $x^{2}+(x+7)^{2}=13^{2}$
Now solve.

OR

Let the snake is caught at a distance of $x \mathrm{~m}$ from the pillar base
\therefore From figure, $\mathrm{AC}^{2}=9^{2}+x^{2}$
(Using Pythagoras Theorem)
and $C D=27-x$.
Since their speed are same so,
$\mathrm{AC}=\mathrm{CD}(\because$ Distance covered will be equal in equal time)

$$
\begin{array}{rlrl}
\Rightarrow & \mathrm{AC}^{2} & =\mathrm{CD}^{2} \\
\Rightarrow & 81+x^{2} & =(27-x)^{2} \\
& & 81+x^{2} & =729+x^{2}-54 x \\
& \therefore & 54 x & =648 \\
& & x & =12 \mathrm{~m} .
\end{array}
$$

9.

$$
\begin{array}{lrl}
& & x^{2}+\frac{a}{a+b} x+\frac{a+b}{a} x+1
\end{array}=0
$$

OR

$$
4 x^{2}+4 b x=a^{2}-b^{2}
$$

$$
\Rightarrow \quad x^{2}+b x=\frac{a^{2}-b^{2}}{4}
$$

$$
\Rightarrow \quad x^{2}+b x+\left(\frac{b}{2}\right)^{2}=\frac{a^{2}-b^{2}}{4}+\frac{b^{2}}{4}
$$

$$
\Rightarrow \quad\left(x+\frac{b}{2}\right)^{2}=\frac{a^{2}}{4}
$$

$$
\Rightarrow \quad x+\frac{b}{2}= \pm \frac{a}{2}
$$

$$
x=\frac{-b \pm a}{2} .
$$

WORKSHEET-38

1. For real and equal roots, $\mathrm{D}=0$.

$$
\begin{aligned}
\therefore & (4 k)^{2}-4 \times 12 \times 3 & =0 \\
\Rightarrow & 16\left(k^{2}-3^{2}\right) & =0 \\
\Rightarrow & (k-3)(k+3) & =0 \\
\Rightarrow & k & = \pm 3 .
\end{aligned}
$$

2. $\alpha+\beta=\frac{2}{1}$ and $\alpha \beta=-3$

$$
\Rightarrow \quad(\alpha+2)+(\beta+2)=2+4
$$

$$
\text { and } \quad \begin{aligned}
(\alpha+2)(\beta+2) & =\alpha \beta+2(\alpha+\beta)+4 \\
& =-3+2(2)+4
\end{aligned}
$$

$$
\Rightarrow \quad S=6 \text { and } P=5
$$

Required equation: $x^{2}-\mathrm{S} x+\mathrm{P}=0$,

$$
\text { i.e., } \quad x^{2}-6 x+5=0
$$

3. $(b)^{2}-(a+b) b+p=0$

$$
\begin{array}{rlrl}
\Rightarrow & & b^{2}-a b-b^{2}+p & =0 \\
\Rightarrow & & p=a b .
\end{array}
$$

4. Yes.

That is a quadratic equation.
5.

$$
\begin{array}{rlrl}
& & 4 \sqrt{3} x^{2}+5 x-2 \sqrt{3} & =0 \\
\Rightarrow & 4 \sqrt{3} x^{2}+8 x-3 x-2 \sqrt{3} & =0 \\
\Rightarrow & & 4 x(\sqrt{3} x+2)-\sqrt{3}(\sqrt{3} x+2) & =0 \\
\Rightarrow & & (4 x-\sqrt{3})(\sqrt{3} x+2)=0 \\
\Rightarrow & & 4 x-\sqrt{3}=0 \text { or } \sqrt{3} x+2=0 \\
\Rightarrow & & x=\frac{\sqrt{3}}{4} \text { or } x=-\frac{2}{\sqrt{3}}=\frac{-2 \sqrt{3}}{3} .
\end{array}
$$

6. $4 x^{2}-2\left(a^{2}+b^{2}\right)+a^{2} b^{2}=0$

Here, $\mathrm{A}=4, \mathrm{~B}=-2\left(a^{2}+b^{2}\right)$ and $\mathrm{C}=a^{2} b^{2}$
Now, $x=\frac{-B \pm \sqrt{B^{2}-4 A C}}{2 \mathrm{~A}}$
$=\frac{2\left(a^{2}+b^{2}\right) \pm \sqrt{4\left(a^{2}+b^{2}\right)^{2}-4 \times 4 \times a^{2} b^{2}}}{2 \times 4}$
$=\frac{2\left(a^{2}+b^{2}\right) \pm 2 \sqrt{a^{4}+b^{4}+2 a^{2} b^{2}-4 a^{2} b^{2}}}{2 \times 4}$
$=\frac{a^{2}+b^{2} \pm \sqrt{\left(a^{2}-b^{2}\right)^{2}}}{4}$
$=\frac{a^{2}+b^{2}+a^{2}-b^{2}}{4}, \frac{a^{2}+b^{2}-a^{2}+b^{2}}{4}$
$\therefore x=\frac{a^{2}}{2}, \frac{b^{2}}{2}$.

$$
\begin{aligned}
& (x-1)^{3}=x^{3}-2 x+1 \\
& \Rightarrow x^{3}-1+3 x(-1)(x-1)=x^{3}-2 x+1 \\
& \Rightarrow \quad x^{3}-1-3 x^{2}+3 x=x^{3}-2 x+1 \\
& \Rightarrow \quad 3 x^{2}-5 x+2=0
\end{aligned}
$$

7. $k=-\frac{10}{9}$ or $k=2$

Hint: Put D $=b^{2}-4 a c=0$
Take $a=1, b=-2(1+3 k)$

$$
c=7(3+2 k) .
$$

8. Let the required number has x as ten's digit of the number.
Given: Product of the digit $=8$

$$
\begin{array}{ll}
\Rightarrow & \text { Unit's digit }=\frac{8}{x} \\
\Rightarrow & \text { Number }=10 x+\frac{8}{x}
\end{array}
$$

If 63 is subtracted from the number the digit interchange their places.

$$
\begin{array}{lr}
\Rightarrow & 10 x+\frac{8}{x}-63=10 \times \frac{8}{x}+x \\
\Rightarrow & 10 x+\frac{8}{x}-63=\frac{80}{x}+x \\
\Rightarrow & 9 x-\frac{72}{x}-63=0 \\
\Rightarrow & 9 x^{2}-63 x-72=0 \\
\Rightarrow & x^{2}-7 x-8=0 \\
\Rightarrow & (x+1)(x-8)=0 \\
\Rightarrow & x+1=0, x-8=0 \\
\Rightarrow & x=-1, x=8
\end{array}
$$

Reject $x=-1 \Rightarrow x=8$
\Rightarrow Required number $=10 \times 8+\frac{8}{8}=81$.
OR
25 students
Hint: Let the number of students attended picnic $=x$
\therefore Per head contribution $=\frac{500}{x}$
According to question,

$$
\begin{aligned}
& & \frac{500}{x-5}-\frac{500}{x} & =5 \\
& \therefore & 500\left[\frac{x-x+5}{x(x-5)}\right] & =5 \\
\Rightarrow & & 500 & =x^{2}-5 x \\
\Rightarrow & & x^{2}-5 x-500 & =0 .
\end{aligned}
$$

9. Let shortest side $=x$
$\therefore \quad$ Hypotenuse $=(2 x+1)$

and

$$
\text { Third side }=x+7
$$

\therefore Using Pythagoras theorem, we get

$$
\begin{aligned}
& & x^{2}+(x+7)^{2} & =(2 x+1)^{2} \\
\Rightarrow & & x^{2}+x^{2}+14 x+49 & =4 x^{2}+4 x+1 \\
\Rightarrow & & 2 x^{2}-10 x-48 & =0 \\
\Rightarrow & & 2 x^{2}-16 x+6 x-48 & =0 \\
\Rightarrow & & 2 x(x-8)+6(x-8) & =0 \\
\Rightarrow & & (2 x+6)(x-8) & =0 \\
\Rightarrow & & 2 x+6=0 \text { or } x-8 & =0 \\
\Rightarrow & & x=-3 \text { or } x & =8
\end{aligned}
$$

Since, side can't be negative

$$
\begin{array}{ll}
\therefore & x=-3 \text { is not possible } \\
\therefore & x=8
\end{array}
$$

\Rightarrow Sides of grassy lands are: $8 \mathrm{~m}, 15 \mathrm{~m}$ and 17 m .

OR

The given quadratic equation is

$$
x^{2}-(\sqrt{2}+1) x+\sqrt{2}=0
$$

Here, $a=1, b=-(\sqrt{2}+1), c=\sqrt{2}$

$$
\text { Now, } \begin{aligned}
x & =\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& =\frac{\sqrt{2}+1 \pm \sqrt{2+1+2 \sqrt{2}-4 \sqrt{2}}}{2} \\
& =\frac{\sqrt{2}+1 \pm \sqrt{2-2 \sqrt{2}+1}}{2} \\
& =\frac{\sqrt{2}+1 \pm \sqrt{(\sqrt{2}-1)^{2}}}{2} \\
& =\frac{\sqrt{2}+1+\sqrt{2}-1}{2}, \frac{\sqrt{2}+1-\sqrt{2}+1}{2} \\
& =\frac{2 \sqrt{2}}{2}, \frac{2}{2} \quad \therefore x=\sqrt{2}, 1
\end{aligned}
$$

Hence, the required roots are $\sqrt{2}$ and 1 .

WORKSHEET-39

1. $S=8+2 \Rightarrow 10=-a \Rightarrow a=-10$
(For 1st eqn.)
$\mathrm{P}=3 \times 3 \Rightarrow 9=b \Rightarrow b=9$ (For 2nd eqn.)
$\therefore x^{2}-10 x+9=0 \Rightarrow x=9,1$.
2. For equal roots, $\mathrm{D}=0$.
$\therefore 64 k^{2}-4 \times 9 \times 16=0 \Rightarrow k= \pm 3$.
3. No.

At $x=1, x^{2}+x+1=1^{2}+1+1=3 \neq 0$
At $x=-1, x^{2}+x+1=(-1)^{2}-1+1=1 \neq 0$
Hence, neither $x=1$ nor $x=-1$ is a solution of the equation $x^{2}+x+1=0$.
4. $\frac{a}{x-a}+\frac{b}{x-b}=\frac{2 c}{x-c}$
$\Rightarrow \frac{a x-a b+b x-a b}{(x-a)(x-b)}=\frac{2 c}{x-c}$
$\Rightarrow(a x+b x-2 a b)(x-c)$

$$
=2 c\left(x^{2}-a x-b x+a b\right)
$$

$\Rightarrow(a+b-2 c) x^{2}-2 a b x+b c x+c a x=0$
$\Rightarrow x[(a+b-2 c) x-(2 a b-c a-b c)]=0$
$\Rightarrow x=0$ or $x=\frac{2 a b-a c-b c}{a+b-2 c}$.
5. $x= \pm \sqrt{2}, \pm 2$

Hint: Let $y=(5+2 \sqrt{6})^{x^{2}-3}$

$$
\begin{array}{ll}
\therefore & \frac{1}{y}=(5-2 \sqrt{6})^{x^{2}-3} \\
& \therefore \\
\therefore & y+\frac{1}{y}=10 \\
\therefore & y
\end{array}
$$

(Using: $\mathrm{D}=b^{2}-4 a c$)
$\Rightarrow \quad y=5 \pm 2 \sqrt{6}$.
Now compare the exponent.
6. $x=\frac{1 \pm \sqrt{5}}{2}$

Hint: Use $a^{2}+b^{2}=(a-b)^{2}+2 a b$

$$
\left(x-\frac{x}{x+1}\right)^{2}+2 x\left(\frac{x}{x+1}\right)=3
$$

$$
\begin{aligned}
& \Rightarrow \quad\left(\frac{x^{2}+x-x}{x+1}\right)^{2}+2 \frac{x^{2}}{x+1}=3 \\
& \Rightarrow \quad\left(\frac{x^{2}}{x+1}\right)^{2}+2\left(\frac{x^{2}}{x+1}\right)=3 \\
& \text { Let } \\
& \Rightarrow \quad y=\frac{x^{2}}{x+1} \\
& \Rightarrow \quad y^{2}+2 y-3=0 \\
& \Rightarrow \quad \frac{x^{2}}{x+1}=1 \text { or } \frac{x^{2}}{x+1}=-3 \\
& \Rightarrow \quad x^{2}-x-1=0 \text { or } x^{2}+3 x+3=0
\end{aligned}
$$

Now solve.
7. $k x(x-2)+6=0$

$$
\begin{array}{rlrl}
\Rightarrow & k x^{2}-2 k x+6 & =0 \\
\therefore & & D & =b^{2}-4 a c \\
& & =4 k^{2}-4(k) 6=4 k^{2}-24 k
\end{array}
$$

\therefore root will be equal if $\mathrm{D}=0$

$$
\begin{array}{lrl}
\Rightarrow & 4 k^{2}-24 k & =0 \\
& 4 k(k-6) & =0 \\
\Rightarrow & k=0 \text { or } k & =6 \\
\text { or } & k \neq 0 \Rightarrow k & =6
\end{array}
$$

8. Hint: Let roots of

$$
\begin{aligned}
& \mathrm{A} x^{2}+2 \mathrm{~B} x+\mathrm{C}=0 \text { be } \alpha^{\prime} \text { and } \beta^{\prime} \\
& \therefore \alpha^{\prime}=\alpha+\delta ; \\
& \quad \beta^{\prime}=\beta+\delta \\
& \therefore \alpha^{\prime}-\beta^{\prime}=\alpha-\beta ; \\
& \therefore\left(\alpha^{\prime}-\beta^{\prime}\right)^{2}=(\alpha-\beta)^{2} \\
& \therefore\left(\alpha^{\prime}+\beta^{\prime}\right)^{2}-4 \alpha^{\prime} \beta^{\prime}=(\alpha+\beta)^{2}-4 \alpha \beta \\
& \Rightarrow \quad \frac{4 \mathrm{~B}^{2}}{\mathrm{~A}^{2}}-4 \cdot \frac{\mathrm{C}}{\mathrm{~A}}=\frac{4 b^{2}}{a^{2}}-4 \cdot \frac{c}{a} \\
& \Rightarrow \quad \frac{b^{2}-a c}{a^{2}}=\frac{\mathrm{B}^{2}-\mathrm{AC}}{\mathrm{~A}^{2}} \\
& \Rightarrow \quad \frac{b^{2}-a c}{\mathrm{~B}^{2}-\mathrm{AC}}=\left(\frac{a}{\mathrm{~A}}\right)^{2}
\end{aligned}
$$

9. Let $\triangle \mathrm{ABC}$ is a right-angled triangle such that $\angle \mathrm{C}=90^{\circ}$ and $b>a$.

$$
\begin{array}{lc}
\therefore & c^{2}=a^{2}+b^{2} \\
\Rightarrow & a^{2}+b^{2}=(3 \sqrt{5})^{2}=45
\end{array}
$$

$\Rightarrow 4 a^{2}+4 b^{2}=180$
Let the new corresponding sides be a^{\prime}, b^{\prime} and c^{\prime} such that
$a^{\prime}=3 a, b^{\prime}=2 b$ and $c^{\prime}=15 \mathrm{~cm}$
Then, $(3 a)^{2}+(2 b)^{2}=(15)^{2}$
$\Rightarrow 9 a^{2}+4 b^{2}=225$
Subtracting equation (i) from equation (ii), we have

$$
5 a^{2}=45 \Rightarrow a=3
$$

Substituting $a=3$ in equation (ii), we have

$$
\begin{aligned}
9 \times 9+4 b^{2} & =225 \\
\Rightarrow \quad 4 b^{2} & =225-81=144 \Rightarrow b=6
\end{aligned}
$$

Hence, the original length of sides are 3 cm , 5 cm and $3 \sqrt{5} \mathrm{~cm}$.

OR

According to the question, the two times:
(i) t minutes past 2 p.m. and
(ii) $60-\left(\frac{t^{2}}{4}-3\right)$ minutes past 2 pm are equal. It means

$$
\begin{aligned}
t & =60-\left(\frac{t^{2}}{4}-3\right) \\
\Rightarrow \quad t+\frac{t^{2}}{4}-3 & =60 \\
\Rightarrow \quad t^{2}+4 t-252 & =0 \\
\Rightarrow \quad t^{2}+18 t-14 t-252 & =0 \\
\Rightarrow \quad t(t+18)-14(t+18) & =0 \\
\Rightarrow \quad(t+18)(t-14) & =0 \\
\Rightarrow \quad t=-18 \text { (rejected) }, t & =14
\end{aligned}
$$

WORKSHEET-40

1. The wrong equation is $x^{2}+17 x+q=0$
$\therefore q=(-2) \times(-15)=30$
Now, the original equation will be $x^{2}+13 x+30=0$. Its roots are $-10,-3$.
2. $x=\frac{2}{3}$ must satisfy $k x^{2}-x-2=0$
$\therefore k \times \frac{4}{9}-\frac{2}{3}-2=0 \Rightarrow k=6$.
3. Hint: For no real root $\mathrm{D}<0$.
4.

$x^{2}+p(2 x+4)+12=0$
$x^{2}+2 p x+4 p+12=0$
\Rightarrow
For real and equal roots, $\mathrm{D}=0$
$\therefore \quad 4 p^{2}-4 \times(4 p+12)=0$

QUADRATIC EQUATIONS

$$
\begin{aligned}
\Rightarrow & 4 p^{2}-16 p-48 & =0 \\
\Rightarrow & 4(p-6)(p+2) & =0 \\
\Rightarrow & p-6=0 \text { or } p+2 & =0 \\
\Rightarrow & p & =6 \text { or }-2 .
\end{aligned}
$$

5. Product of roots $=\frac{c}{a}$

$$
\begin{align*}
\Rightarrow & \frac{1}{2} \times(-2) & =\frac{-q}{p+1} \\
\Rightarrow & -p-1 & =-q \\
\Rightarrow & q-p & =1 \tag{i}
\end{align*}
$$

Also sum of roots $=\frac{1}{2}-2=\frac{3}{p+1}$

$$
\begin{equation*}
\Rightarrow \quad-\frac{1}{2}=\frac{1}{p+1} \Rightarrow p=-3 \tag{ii}
\end{equation*}
$$

\therefore From (i), $\quad q=-2$
$\therefore \quad p+q+5=-3-2+5=0$.
6. Hint: Use $\mathrm{D} \geq 0$ for both the equation.
7. Hint: Use $\sin \alpha+\cos \alpha=-\frac{b}{a}$
and $\quad \sin \alpha \cdot \cos \alpha=\frac{c}{a}$
Squaring both sides of (i) and using (ii) you will get the result.
8. The given equation is

$$
\begin{array}{rr}
& \frac{x-1}{x-2}+\frac{x-3}{x-4}=3 \frac{1}{3} \\
\Rightarrow & \frac{(x-1)(x-4)+(x-2)(x-3)}{(x-2)(x-4)}=\frac{10}{3} \\
\Rightarrow & \frac{x^{2}-5 x+4+x^{2}-5 x+6}{x^{2}-6 x+8}=\frac{10}{3} \\
\Rightarrow & \frac{x^{2}-5 x+5}{x^{2}-6 x+8}=\frac{5}{3} \\
\Rightarrow & 5 x^{2}-30 x+40=3 x^{2}-15 x+15 \\
\Rightarrow & 2 x^{2}-15 x+25=0
\end{array}
$$

Let us use quadratic formula.

$$
\begin{aligned}
& x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}=\frac{15 \pm \sqrt{225-4 \times 2 \times 25}}{2 \times 2} \\
& \Rightarrow x=\frac{15 \pm 5}{4} \Rightarrow x=5, \frac{5}{2} .
\end{aligned}
$$

9. Yes, 25 m and 16 m

Hint: Let the two adjacent sides of the field be a and b.

Then

$$
2(a+b)=82 \Rightarrow a+b=41
$$

And

$$
a b=400 .
$$

OR
3 cm and 9 cm
Hint: Let smaller leg $=x$
From figure,

$$
\Rightarrow \quad x^{2}+y^{2}=(3 \sqrt{10})^{2}=90 \quad B^{\square}
$$

Also

$$
\begin{equation*}
(3 x)^{2}+(2 y)^{2}=(9 \sqrt{5})^{2} \tag{ii}
\end{equation*}
$$

$\Rightarrow \quad 9 x^{2}+4 y^{2}=405$
Use (i) and (ii) and then solve.

WORKSHEET-41

1. Let us find the discriminant of:
$x^{2}+2 \sqrt{3} x-1=0$
$\mathrm{D}=(2 \sqrt{3} x)^{2}-4 \times 1 \times(-1)=12+4=16>0$
$\Rightarrow x^{2}+2 \sqrt{3} x-1=0$ has real roots.
2. $7\left(\frac{2}{3}\right)^{2}+t\left(\frac{2}{3}\right)-3=0$
$\Rightarrow \quad \frac{28}{9}+\frac{2}{3} t-3=0$
$\Rightarrow t=\frac{3}{2}\left(3-\frac{28}{9}\right) \Rightarrow t=-\frac{3}{2} \times \frac{1}{9}=-\frac{1}{6}$.
3. Consider $x^{2}+5 p x+16$ has no real roots.
$\Rightarrow \mathrm{D}<0$
$\Rightarrow(5 p)^{2}-4 \times 1 \times 16<0$
$\Rightarrow 25 p^{2}<64 \Rightarrow p< \pm \sqrt{\frac{64}{25}}$
$\Rightarrow-\frac{8}{5}<p<\frac{8}{5}$.

4. True.

Let equation is $a x^{2}+b x+c=0$
Case: I $a>0$ and $c<0 \Rightarrow a c<0 \Rightarrow-a c>0$

$$
\therefore \mathrm{D}=b^{2}-4 a c>0 \quad \therefore b^{2} \geq 0
$$

Case: II $a<0$ and $c>0 \Rightarrow a c<0 \Rightarrow-a c>0$
$\therefore \mathrm{D}=b^{2}-4 a c>0$.
5. $(a-b) x^{2}+(b-c) x+(c-a)=0$

As this equation has equal roots, the discriminant of it vanishes.

$$
\begin{aligned}
\text { i.e., } & \mathrm{D}
\end{aligned}=0
$$

$$
\begin{array}{rlrl}
& \Rightarrow & b^{2}-2 b c+c^{2}-4 a c+4 a^{2} \\
& & +4 b c-4 a b & =0 \\
\Rightarrow & & 4 a^{2}+b^{2}+c^{2}-4 a b+2 b c-4 a c & =0 \\
& \Rightarrow & (2 a-b-c)^{2} & =0 \\
& & {\left[\because(x+y+z)^{2}=x^{2}+y^{2}+z^{2}+2 x y\right.} \\
& & +2 y z+2 z x] \\
& \Rightarrow & & 2 a-b-c=0
\end{array}
$$

Hence proved.
6. $\frac{14}{x+3}-1=\frac{5}{x+1}$

$$
\begin{aligned}
\Rightarrow & \frac{14}{x+3}-\frac{5}{x+1} & =1 \\
\Rightarrow & \frac{14 x+14-5 x-15}{(x+3)(x+1)} & =1 \\
\Rightarrow & 9 x-1 & =(x+3)(x+1) \\
\Rightarrow & 9 x-1 & =x^{2}+4 x+3 \\
\Rightarrow & x^{2}-5 x+4 & =0 \\
\Rightarrow & (x-4)(x-1) & =0 \\
\Rightarrow & x=4 \text { or } x & =1
\end{aligned}
$$

7.

$$
\begin{aligned}
& & \frac{1}{2 a+b+2 x} & =\frac{1}{2 a}+\frac{1}{b}+\frac{1}{2 x} \\
& & & \frac{1}{2 a+b+2 x}-\frac{1}{2 x}
\end{aligned}=\frac{1}{2 a}+\frac{1}{b} .
$$

8. Let first natural number $=x$
$\therefore \quad$ second natural number $=x+3$
\therefore According to question,

$$
\begin{aligned}
& \frac{1}{x}-\frac{1}{x+3}=\frac{3}{28} \\
\Rightarrow \quad & \frac{x+3-x}{x(x+3)}=\frac{3}{28}
\end{aligned}
$$

$$
\begin{array}{rlrl}
\Rightarrow & & 28 & =x(x+3) \\
\Rightarrow & x^{2}+3 x-28 & =0 \\
\Rightarrow & x^{2}+7 x-4 x-28 & =0 \\
\Rightarrow & x(x+7)-4(x+7) & =0 \\
\Rightarrow & & (x-4)(x+7) & =0 \\
\Rightarrow & x=4 \text { or } x & =-7
\end{array}
$$

[Reject as x is natural]

$$
\begin{array}{rrr}
\Rightarrow & x=4 \\
\Rightarrow & x+3=7
\end{array}
$$

CHAPTER TEST

1. We have,

$$
\begin{aligned}
2 x^{2}+3+2 \sqrt{6} x+x^{2} & =3 x^{2}-5 x \\
\Rightarrow \quad(5+2 \sqrt{6}) x+3 & =0
\end{aligned}
$$

which is not a quadratic equation.
2. The given equation can be written as

$$
x^{4}+x^{2}+1=0
$$

Here, $D=1^{2}-4 \times 1 \times 1=-3<0$
As $\mathrm{D}<0$, there is no real root.
3.

$$
9 x^{2}+\frac{3}{4} x-\sqrt{2}=0
$$

Let us add and subtract $\frac{1}{64}$.

$$
\begin{aligned}
9 x^{2}+\frac{3}{4} x+\frac{1}{64}-\frac{1}{64}-\sqrt{2} & =0 \\
\Rightarrow\left(3 x+\frac{1}{8}\right)^{2}-\left(\frac{\sqrt{1+64 \sqrt{2}}}{8}\right)^{2} & =0
\end{aligned}
$$

Clearly, the required number is $\frac{1}{64}$.
4. $2 x^{2}-k x+k=0$ has equal roots, if discriminant $=0$.
$\Rightarrow(-k)^{2}-4 \times 2 \times k=0 \Rightarrow k(k-8)=0$
$\Rightarrow k=0$ or 8 .

5. True.

Let us consider a quadratic equation

$$
\sqrt{3} x^{2}-7 \sqrt{3} x+12 \sqrt{3}=0
$$

Here, $\mathrm{D}=(-7 \sqrt{3})^{2}-4 \times \sqrt{3} \times 12 \sqrt{3}$
$\Rightarrow \quad \mathrm{D}=147-144=3 \Rightarrow \mathrm{D}>0$
\Rightarrow Roots are real and distinct.

So, $x=\frac{7 \sqrt{3} \pm \sqrt{3}}{2 \sqrt{3}} \quad \therefore x=4,3$ which are rationals.

OR

No.

$$
\begin{array}{rlrl}
& & (x-1)^{2}+(2 x+1) & =0 \\
\Rightarrow & x^{2}-2 x+1+2 x+1 & =0 \\
\Rightarrow & & x^{2}+2 & =0
\end{array}
$$

Here, $\mathrm{D}=0^{2}-4 \times 1 \times 2=-8<0$.
Hence, the given equation has no real root.
6. $\frac{1}{2} x^{2}-\sqrt{11 x}+1=0$

Here, $a=\frac{1}{2}, b=-\sqrt{11}, c=1$

$$
\begin{aligned}
\mathrm{D} & =b^{2}-4 a c \\
& =(-\sqrt{11})^{2}-4 \times \frac{1}{2} \times 1=9 \\
x & =\frac{-b \pm \sqrt{\mathrm{D}}}{2 a}=\frac{-(-\sqrt{11}) \pm 3}{2 \times 1} \\
\alpha & =\frac{\sqrt{11}+3}{2}, \beta=\frac{\sqrt{11}-3}{2} .
\end{aligned}
$$

7. Let the required natural number be N .
$\mathrm{N}^{2}-84=(\mathrm{N}+8) \times 3 \Rightarrow \mathrm{~N}^{2}-3 \mathrm{~N}-108=0$
$\Rightarrow(\mathrm{N}-12)(\mathrm{N}+9)=0 \Rightarrow \mathrm{~N}=12$ or -9
But -9 is not a natural number.
So, $\mathrm{N}=12$ is the required natural number.
8. $(b-c) x^{2}+(c-a) x+(a-b)=0$

A quadratic equation is a perfect square, if its discriminant (D) is equal to zero.
Here, $\mathrm{A}=b-c, \mathrm{~B}=c-a$ and $\mathrm{C}=a-b$
Now, D $=0$
$\Rightarrow \mathrm{D}=\mathrm{B}^{2}-4 \mathrm{AC}=(c-a)^{2}-4(b-c)(a-b)$
$\Rightarrow c^{2}+a^{2}-2 c a-4\left(a b-b^{2}-c a+b c\right)=0$
$\Rightarrow c^{2}+a^{2}+4 b^{2}+2 c a-4 b c-4 a b=0$
$\Rightarrow(c+a-2 b)^{2}=0$
$\left[\because(x+y+z)^{2}=x^{2}+y^{2}+z^{2}+2 x y\right.$ $+2 y z+2 z x]$
$\Rightarrow c+a-2 b=0 \Rightarrow b=\frac{a+c}{2}$.
Hence proved.
9. (i) Let width of grass paths $=x \mathrm{~m}$
\therefore Length of rectangular pond $=(50-2 x) \mathrm{m}$ breadth of rectangular pond $=(40-2 x) \mathrm{m}$
\therefore Area of grass path $=$ Area of lawn -
Area of rectangular pond

$$
\begin{aligned}
& =50 \times 40-(50-2 x)(40-2 x) \\
& =2000-2000+100 x+80 x-4 x^{2} \\
& =180 x-4 x^{2}
\end{aligned}
$$

According to question

$$
\begin{aligned}
& & 180 x-4 x^{2} & =1184 \\
\Rightarrow & & 4 x^{2}-180 x+1184 & =0 \\
\Rightarrow & & x^{2}-45 x+296 & =0 \\
\Rightarrow & & x^{2}-8 x-37 x+296 & =0 \\
\Rightarrow & & x(x-8)-37(x-8) & =0 \\
\Rightarrow & & (x-8)(x-37) & =0 \\
\Rightarrow & & x=8 \text { or } x & =37
\end{aligned}
$$

Reject $x=37$ as it is not possible $\therefore x=8 \mathrm{~m}$
(ii) \therefore Length of pond $=34 \mathrm{~m}$; breadth of pond $=24 \mathrm{~m}$.
(iii) Concept of quadratic equation is used in solving this problem.
(iv) Love for environment.

5 ARITHMETIC PROGRESSIONS

WORKSHEET-43

1. $\mathrm{S}_{15}=\frac{15}{2}\left[2 \times \frac{3}{\sqrt{5}}+(15-1) \times\left(\sqrt{5}-\frac{3}{\sqrt{5}}\right)\right]$

$$
\begin{aligned}
& =\frac{15}{2} \times\left(\frac{6}{\sqrt{5}}+\frac{28}{\sqrt{5}}\right)=\frac{17 \times 15}{\sqrt{5}} \\
& =51 \sqrt{5} .
\end{aligned}
$$

2. $2 k-1-k=2 k+1-(2 k-1)$

$$
\begin{aligned}
\Rightarrow & k-1 & =2 \\
\Rightarrow & k & =3 .
\end{aligned}
$$

3. Common difference $=-2-1=-5-(-2)$

$$
=-3 .
$$

4. $p=4$

Hint: Use: if a, b, c are in A.P. $\Rightarrow 2 b=a+c$.
5. $a_{4}=0 \Rightarrow a+3 d=0 \Rightarrow a=-3 d$
$\therefore a_{25}=a+24 d=-3 d+24 d \quad\{\because$ Using (i) $\}$

$$
=21 d
$$

Also

$$
a_{11}=a+10 d=-3 d+10 d=7 d
$$

Clearly

$$
21 d=3 \times 7 d
$$

$\Rightarrow \quad a_{25}=3\left(a_{11}\right)$
Hence Proved
6. $a_{12}=-13$
$\Rightarrow \quad a+11 d=-13$
Also, $a+a+d+a+2 d+a+3 d=24$

$$
\begin{array}{ll}
\Rightarrow & 4 a+6 d=24 \\
\Rightarrow & 2 a+3 d=12 \tag{ii}
\end{array}
$$

Multiplying equation (i) by 2 , we get

$$
\begin{equation*}
2 a+22 d=-26 \tag{iii}
\end{equation*}
$$

Subtracting (iii) from (ii), we get

$$
-19 d=38 \Rightarrow d=-2
$$

\therefore From (i),

$$
\Rightarrow a-22=-13
$$

$$
\begin{array}{rlrl}
\Rightarrow & & a & =9 \\
\therefore & \mathrm{~S}_{10} & =\frac{10}{2}\{2 \times 9+(10-1) . \\
& & =5\{18-18\}=0 .
\end{array}
$$

OR

$$
\begin{align*}
& a_{5}+a_{9}=72 \Rightarrow 2 a+12 d=72 \tag{i}\\
& \text { also } \quad a_{7}+a_{12}=97 \Rightarrow 2 a+17 d=97 \tag{ii}\\
& \text { (i) - (ii) } \quad \Rightarrow-5 d=-25 \\
& \Rightarrow \quad d=5 \\
& \text { From (i), } \quad \Rightarrow \quad a=6
\end{align*}
$$

$\therefore \quad$ A.P. is $6,11,16, \ldots$.
7. $\mathrm{S}_{n}=2 n-3 n^{2}$

$$
\begin{aligned}
\text { Hint: } & & a_{1} & =5-6=-1 \\
& & a_{2} & =5-12=-7 \\
& & a_{3} & =5-18=-13 \\
\ldots & & d & =a_{2}-a_{1}=-6 \\
\ldots & & \mathrm{~S}_{n} & =\frac{n}{2}\{-2+(n-1)(-6)\} \\
& & & =\frac{n}{2}\{4-6 n\} \\
& & & =n(2-3 n)=2 n-3 n^{2} .
\end{aligned}
$$

8. $a=18 ; d=15 \frac{1}{2}-18=-2 \frac{1}{2}=-\frac{1}{2}$

$$
\begin{aligned}
\therefore \quad a_{n} & =-49 \frac{1}{2} \therefore a_{n}=a+(n-1) d \\
\Rightarrow-49 \frac{1}{2} & =18+(n-1) \cdot\left(-\frac{5}{2}\right) \\
& =18-\frac{5}{2} n+\frac{5}{2} \\
\Rightarrow \quad-70 & =-\frac{5}{2} n \Rightarrow n=28 .
\end{aligned}
$$

Also

$$
\begin{aligned}
\text { Sum } & =\frac{n}{2}\left\{a+a_{n}\right\} \\
& =\frac{28}{2}\left\{18-49 \frac{1}{2}\right\}=14\left\{18-\frac{99}{2}\right\} \\
& =14 \times\left(-\frac{63}{2}\right)=-441 .
\end{aligned}
$$

9. $60^{\circ}, 80^{\circ}, 100^{\circ}, 120^{\circ}$

Hint: Let the angles be:

$$
a-3 d, a-d, a+d, a+3 d
$$

OR

$\because \quad \mathrm{S}_{n}=5 n^{2}-3 n$
$\therefore \quad \mathrm{S}_{n-1}=5(n-1)^{2}-3(n-1)$
$=5 n^{2}+5-10 n-3 n+3$
$=5 n^{2}-13 n+8$
$n^{\text {th }}$ term $\left(a_{n}\right)=S_{n}-\mathrm{S}_{n-1}$

$$
\begin{aligned}
& =5 n^{2}-3 n-\left(5 n^{2}-13 n+8\right) \\
& =10 n-8 \\
a_{1} & =10 \times 1-8=2 \\
a_{2} & =10 \times 2-8=12 \\
a_{3} & =10 \times 3-8=22
\end{aligned}
$$

Therefore, the A.P. is $2,12,22, \ldots . . .$.
Substituting $n=10$ in $a_{n}=10 n-8$, we get $10^{\text {th }}$ term $=10 \times 10-8=92$.

WORKSHEET-44

1. $5 a_{5}=10 a_{10}$

$$
\Rightarrow 5(a+4 d)=10(a+9 d)
$$

$$
\Rightarrow \quad 5 a=-70 d \quad \Rightarrow \quad a=-14 d
$$

Now $\quad a_{15}=-14 d+14 d=0$.
2. $a_{n}=505 \Rightarrow a+(n-1) \times d=505$

$$
\Rightarrow \quad 1+7 n-7=505
$$

$\Rightarrow \quad n=\frac{511}{7}=73$
\therefore Middle term is $\left(\frac{n+1}{2}\right)^{\text {th }}=37$ th
$\therefore a_{37}=1+36 \times 7=253$.
3. $2(p+10)=2 p+3 p+2$
$\Rightarrow \quad 2 p+20=5 p+2$
$\Rightarrow \quad 18=3 p$
$\Rightarrow \quad p=6$.
4. Let if possible:

$$
\begin{array}{rlrl}
a_{n} & =0 \\
\Rightarrow \quad 0 & =31+(n-1) \times d=31+(n-1) \times(-3) \\
& & \{\because d=28-31=-3\} \\
& =31-3 n+3 \\
0 & =34-3 n \Rightarrow 3 n=34
\end{array}
$$

$n=\frac{34}{3}$ which is not a natural number.
$\Rightarrow 0$ can't be any term of given sequence.
5. $15^{\text {th }}$ term from end of $-10,-20,-30, \ldots$. ,

$$
-980,-990,-1000
$$

$=15^{\text {th }}$ term of $-1000,-990,-980$, \qquad

$$
-20,-10
$$

$=-1000+(15-1) \times(-990+1000)$
$=-1000+140=-860$.
6. $6 n-1$

Hint: Use

$$
a_{n}=\mathrm{S}_{n}-\mathrm{S}_{n-1}
$$

7. Hint: Use $S_{20}=S_{30}$ and show that $S_{50}=0$.
8. A.P.: $63,65,67$,.. \qquad
$a=63, d=65-63=2$
$\therefore n^{\text {th }}$ term of $63,65,67, \ldots \ldots$.
$=a+(n-1) \times d=63+(n-1) \times 2$
A.P.: $3,10,17, \ldots$.
$a^{\prime}=3, d^{\prime}=10-3=7$
$\therefore n^{\text {th }}$ term of $3,10,17, \ldots . . .$.
$=a^{\prime}+(n-1) d^{\prime}=3+(n-1) \times 7$
According to the question,

$$
63+(n-1) \times 2=3+(n-1) \times 7
$$

[Using (i) and (ii)]
$\Rightarrow 2 n-2-7 n+7=3-63$
$\Rightarrow \quad-5 n+5=-60$
$\Rightarrow \quad-5 n=-65 \Rightarrow n=13$.
9. The sequence of savings (in rupees) is

4, 5.75, 7.5, 19.75

Here, $\quad a=4$
$d=1.75$
$a_{n}=19.75$
$\Rightarrow \quad a+(n-1) \times d=19.75$
$\Rightarrow \quad 4+(n-1) \times(1.75)=19.75$
$\Rightarrow \quad 4+1.75 n-1.75=19.75$
$\Rightarrow \quad 1.75 n=19.75-2.25$
$\Rightarrow \quad 1.75 n=17.50$
$\Rightarrow \quad n=10$
In 10th week her saving will be ` 19.75.

OR

Let first term be a and common difference be d.

According to question,

$$
\begin{array}{rlrl}
a_{4}+a_{8} & =24 \\
\Rightarrow & & a+3 d+a+7 d & =24 \\
& a+5 d & =12 \\
\text { and } & a_{6}+a_{10} & =44 \\
\Rightarrow & a+5 d+a+9 d & =44 \\
& a+7 d & =22 \tag{ii}
\end{array}
$$

Subtracting (i) from (ii), we get

$$
\begin{array}{rlrl}
& 2 d & =10 \\
& \therefore & d & =5
\end{array}
$$

Putting $d=5$ in (i), we get

$$
a=-13
$$

\therefore First three terms of this A.P. will be -13 , $-8,-3$.

WORKSHEET-45

1. Hint: 12, 16, 20,...., 248

$$
\begin{array}{rlrl}
\therefore & 248 & =12+(n-1) 4 \\
\Rightarrow & \frac{236}{4} & =n-1 \\
& \Rightarrow & n & =60 .
\end{array}
$$

2. $\mathrm{S}_{n}=90 \Rightarrow 90=\frac{n}{2}\{4+(n-1) \times 8\}$

$$
\begin{aligned}
& \Rightarrow \quad 180=n(8 n-4) \\
& \Rightarrow \quad 2 n^{2}-n-45=0 \\
& \Rightarrow(2 n+9)(n-5)=0 \\
& \Rightarrow \quad n=5 \\
& \therefore a_{n}=a_{5}=a+4 \times d=2+4 \times 8=34 \text {. }
\end{aligned}
$$

3.

$$
a_{n}=a_{n}^{\prime}
$$

$$
\begin{array}{rlrl}
\Rightarrow & 63+(n-1) \times 2 & =3+(n-1) \times 7 \\
\Rightarrow & & 2 n+61 & =7 n-4 \\
\Rightarrow & & 5 n & =65 \\
\Rightarrow & & n & =13 .
\end{array}
$$

4. Common difference $=2 p-1-p$

$$
=7-(2 p-1)
$$

$\therefore \quad 2 p-p+2 p=7+1+1$
$\Rightarrow \quad 3 p=9 \Rightarrow p=3$.
5. $a=103 ; d=101-103=-2$
... $a_{n}=49$
$\Rightarrow 103+(n-1) \times(-2)=49$
$\Rightarrow \quad-2 n=49-105$
$\Rightarrow \quad n=28$
$S=\frac{28}{2}\{103+49)$
$=14 \times 152=2128$.
6. $-1,4,740$

Hint: $\quad a_{3}=7$

$$
a_{7}=3 \times a_{3}+2 .
$$

7. Let the first term be a and the common difference be d.
$\because \mathrm{S}_{n}=\frac{n}{2}[2 a+(n-1) d] \therefore 42=\frac{6}{2}[2 a+5 d]$
$\Rightarrow 2 a+5 d=14$
$\because a_{n}=a+(n-1) d \quad \therefore \frac{a+9 d}{a+29 d}=\frac{1}{3}$
$\Rightarrow 3 a+27 d=a+29 d \Rightarrow 2 a-2 d=0 \Rightarrow a=d$
Substituting $a=d$ in equation (i), we have

$$
d=2 \text { and so } a=2
$$

Now, $\quad a_{18}=2+17 d=2+17 \times 2=36$.
Hence the first term is 2 and $18^{\text {th }}$ term is 36 .
8. Hint: $\quad m a_{m}=n a_{n}$
$\Rightarrow m\{a+(m-1) d\}=n\{a+(n-1) d\}$
$\Rightarrow \quad m\{a+(m-1) d\}-n\{a+(n-1) d\}=0$
$\Rightarrow a(m-n)+\{m(m-1)-n(n-1)\} d=0$
$\Rightarrow \quad a(m-n)+\left\{\left(m^{2}-n^{2}\right)-(m-n\} d=0\right.$
$\Rightarrow a(m-n)+\{(m-n)(m+n-1) d=0$
$\Rightarrow a+(m+n-1) d=0$
$\{\because m \neq n\}$
$\Rightarrow \quad a_{m+n}=0$.
9. (i) Here, penalty for delay on

1 st day $=` 200$
2nd day $=` 250$
3 rd day $=` 300$
\qquad

Now, 200, 250, 300, are in A.P. such that

$$
a=200, \quad d=250-200=50
$$

$\therefore S_{30}$ is given by

$$
\begin{aligned}
S_{30}= & \frac{30}{2}[2(200)+(30-1) \times 50] \\
& \quad\left[\text { Using } S_{n}=\frac{n}{2}[2 a+(n-1) d]\right] \\
= & 15[400+29 \times 50] \\
= & 15[400+1450] \\
= & 15 \times 1850=27,750
\end{aligned}
$$

Thus, penalty for the delay for 30 days is 27,750.
(ii) One should be punctual and show dedication to his work, failing of which may result loss.

WORKSHEET-46

$$
\text { 1. } \left.\begin{array}{rlrl}
& & a_{1} & =x ; a_{2}=y ; l=2 x \\
& \therefore & d & =y-x \\
& \therefore & & 2 x
\end{array}\right)=x+(n-1) \cdot(y-x) .
$$

2. $10^{\text {th }}$ term from end of $4,9, \ldots . ., 244,249,254$ $=10^{\text {th }}$ term from begining of 254, 249, 244,

$$
=254+9 \times(-5)=254-45=209 .
$$

3. $105,112,119$, \qquad 994

$$
a_{n}=a+(n-1) d
$$

$$
\Rightarrow \quad 994=105+(n-1) \times 7
$$

$$
\Rightarrow \quad 994=105+7 n-7
$$

$$
\Rightarrow \quad 994=98+7 n
$$

$$
\therefore \quad n=\frac{994-98}{7}=128
$$

4.

$$
\begin{aligned}
\mathrm{S}_{n} & =\frac{n}{2}(a+l) \Rightarrow 144=\frac{9}{2}(a+28) \\
\Rightarrow a+28 & =32 \Rightarrow a=4 .
\end{aligned}
$$

5. Yes,

$$
\text { Hint: } \begin{aligned}
a_{30}-a_{20} & =a+29 d-a-19 d \\
& =10 d=-40 .
\end{aligned}
$$

6. Let the first term and common difference of first A.P. be A and D respectively and that of the second A.P. be a and d respectively.

$$
\begin{aligned}
& \frac{\frac{n}{2}[2 \mathrm{~A}+(n-1) \mathrm{D}]}{\frac{n}{2}[2 a+(n-1) d]} \\
\Rightarrow \quad \frac{2 \mathrm{~A}+(n-1) \mathrm{D}}{2 a+(n-1) d} & =\frac{7 n+1}{4 n+27} \\
\Rightarrow \quad & \frac{7 n+27}{4 n+27}
\end{aligned}
$$

$\Rightarrow \quad \frac{\mathrm{A}+\left(\frac{n-1}{2}\right) \mathrm{D}}{a+\left(\frac{n-1}{2}\right) d}=\frac{7 n+1}{4 n+27}$
To prepare the 5th term in numerator and denominator of LHS of this last equation, we should put $\frac{n-1}{2}=4$, i.e., $n=9$.
Therefore,
$\frac{\mathrm{A}+4 \mathrm{D}}{a+4 d}=\frac{7 \times 9+1}{4 \times 9+27} \Rightarrow \frac{\mathrm{~A}_{5}}{a_{5}}=\frac{64}{63}$
Hence, the required ratio is $64: 63$.
7. Hint: Use $a^{\prime}+(p-1) d=a$

$$
\begin{aligned}
a^{\prime}+(q-1) d & =b \\
a^{\prime}+(r-1) d & =c .
\end{aligned}
$$

OR
Let the first term be a and the common difference be d.
Now, $\begin{aligned} a_{19} & =3 \times a_{6} \Rightarrow a+18 d=3(a+5 d) \\ 2 a & =3 d\end{aligned}$
Also, $a_{9}=19 \Rightarrow a+8 d=19$
From equations (i) and (ii),

$$
\begin{align*}
& \frac{3}{2} d+8 d=19 \quad \Rightarrow \quad 19 d=38 \\
& \Rightarrow \quad d=2 \text { and so } a=3 .
\end{align*}
$$

[From equation (i)]
Hence, the A.P. is $a, a+d, a+2 d$,
i.e., $3,5,7$, \qquad
8. Let $a=$ first term
$d=$ common difference

$$
\begin{array}{rlrl}
\therefore & a_{n} & =a+(n-1) d \\
& \therefore & a_{17} & =a+16 d \\
& a_{8} & =a+7 d \\
& a_{11} & =a+10 d
\end{array}
$$

Now $a_{17}=2 \cdot a_{8}+5$

$$
\begin{align*}
\Rightarrow & & a+16 d & =2(a+7 d)+5 \\
& & & =2 a+14 d+5 \\
\Rightarrow & & 2 d & =a+5 \\
\Rightarrow & & a & =2 d-5 \tag{i}
\end{align*}
$$

Also as $\quad a_{11}=43$
$\Rightarrow \quad a+10 d=43$
Using (i), $2 d-5+10 d=43$
$\Rightarrow \quad 12 d=48$

$$
\begin{array}{rlrl}
& d & =4 \\
\therefore \text { from }(i) \quad \Rightarrow & a & =2 \times 4-5=3 \\
\therefore & a_{n} & =a+(n-1) \cdot d \\
\Rightarrow & a_{n} & =3+(n-1) \cdot 4 \\
& =3+4 n-4 \\
& a_{n} & =4 n-1
\end{array}
$$

9. Hint: Saving is sum of 17 terms of the AP 5000, 5500, 6000,
(i) $\mathrm{S}=5000+5500+6000+6500+\ldots$

$$
\begin{aligned}
& =\frac{17}{2}\{2 \times 5000+16 \times 500\} \\
& =\frac{17}{2}\{10000+8000\}=18000 \times \frac{17}{2} \\
& =153000
\end{aligned}
$$

(ii) Sum of n-terms of an Arithmetic Progression
(iii) Caring, responsible and proactive.

WORKSHEET-47

1. $\mathrm{S}_{n}=3 n^{2}-n$

$$
\begin{array}{rlrlrl}
& & \text { Put } n & =1 & \therefore & \mathrm{~S}_{1}=a_{1}=2 \\
& \text { Put } n & =2 & \therefore & \mathrm{~S}_{2}=a_{1}+a_{2}=10 \\
\Rightarrow & a_{2} & =8 & & \\
& \therefore & d & =a_{2}-a_{1}=6 . &
\end{array}
$$

2. Hint: $\quad a+2 d=4$

$$
\begin{aligned}
& \begin{array}{l}
a+8 d
\end{array}=-8 \\
&-\quad+ \\
& \hline-6 d=12 \\
& d=-2 \\
& a=8 \\
& a_{10}=a+9 d \\
&=8-18=-10 .
\end{aligned}
$$

3. Hint: $a_{n}=S_{n}-S_{n-1}$.
4. Let the $n^{\text {th }}$ term be -44 .

$$
\begin{array}{rlrl}
\therefore & & a_{n} & =-44 \\
\Rightarrow & a+(n-1) d & =-44 \\
\Rightarrow & 40+(n-1)(-4) & =-44 \\
\Rightarrow & & (n-1) & =21 \Rightarrow n=22
\end{array}
$$

5. -8930

Hint: $a=-5 ; d=-8-(-5)=-3$.

$$
a_{n}=-230 . \text { Find } n
$$

Then use $\mathrm{S}_{n}=\frac{n}{2}\{a+l\}$.
6. $n^{\text {th }}$ term is $a_{n}=5 n-3$

Substituting $n=n-1$, we have
$(n-1)^{\text {th }}$ term is $a_{n-1}=5(n-1)-3=5 n-8$
\therefore Common difference is $d=a_{n}-a_{n-1}$

$$
\begin{aligned}
& =5 n-3-5 n+8 \\
& =5
\end{aligned}
$$

Substitute $n=1$ in $a_{n}=5 n-3$ to get first term

$$
a_{1}=5 \times 1-3 \Rightarrow a_{1}=2
$$

Now, using

$$
\mathrm{S}_{n}=\frac{n}{2}\left[2 a_{1}+(n-1) d\right]
$$

The sum of first 20 terms is

$$
\begin{aligned}
\mathrm{S}_{20} & =\frac{20}{2}[2 \times 2+(20-1) \times 5]=10 \times 99 \\
& =990
\end{aligned}
$$

7. Let the same common difference be d.

$$
\begin{align*}
30^{\text {th }} \text { term of one A.P. } & =3+(30-1) \times d \\
& =3+29 d \tag{i}
\end{align*}
$$

$30^{\text {th }}$ term of other A.P. $=8+(30-1) d$

$$
\begin{equation*}
=8+29 d \tag{ii}
\end{equation*}
$$

Now, the required difference

$$
\begin{aligned}
& =(8+29 d)-(3+29 d) \\
& \quad \quad[\text { Using equations }(i) \text { and }(i i)] \\
& =8+29 d-3-29 d=5
\end{aligned}
$$

8. Hint:

$$
\begin{aligned}
& \frac{p}{2}\left\{2 a^{\prime}+(p-1) d\right\}=a \\
& \frac{q}{2}\left\{2 a^{\prime}+(q-1) d\right\}=b \\
& \frac{r}{2}\left\{2 a^{\prime}+(r-1) d\right\}=c
\end{aligned}
$$

OR

Let the first term and the common difference of the given A.P. be a and d respectively.

$$
\begin{align*}
& 5^{\text {th }} \text { term }=0 \quad \Rightarrow a+4 d=0 \\
& \Rightarrow \quad a=-4 d \\
& \text { 23rd term: } a_{23}=a+22 d \\
& \Rightarrow \quad a_{23}=-4 d+22 d \\
& \text { [From equation (i)] } \\
& \Rightarrow \quad a_{23}=18 d \tag{ii}\\
& \text { 11th term: } a_{11}=a+10 d \\
& =-4 d+10 d
\end{align*}
$$

[From equation (i)]

$$
\Rightarrow \quad a_{11}=6 d \Rightarrow a_{11}=6 \times \frac{a_{23}}{18}
$$

[From equation (ii)]

$$
\begin{array}{rlrl}
\Rightarrow & a_{23} & =3 a_{11} \\
\Rightarrow & & \text { 23rd term } & =3 \times 11 \text { th term }
\end{array}
$$

Hence proved.
9. Let the digits of the number be $a-d, a$ and $a+d$ such the required number is
$100(a-d)+10 a+a+d$ as the digits are in A.P.
So, the required number $=111 a-99 d$
Sum of the digits $=15$
$\begin{aligned} \Rightarrow & & a-d+a+a+d & =15 \\ \Rightarrow & & a & =5\end{aligned}$
The number obtained by reversing the digits

$$
\begin{align*}
& =100(a+d)+10 a+a-d \\
& =111 a+99 d \tag{iii}
\end{align*}
$$

According the given condition, we have

$$
111 a-99 d=594+111 a+99 d
$$

[Using equations (i) and (iii)]

$$
\begin{align*}
\Rightarrow & -2 \times 99 d & =594 \\
\Rightarrow & d & =-3 \tag{iv}
\end{align*}
$$

Using equations (i), (ii) and (iv), we arrive that the original number is
$111 \times 5-99 \times(-3)$, that is 852 .

OR

16 rows, 5 logs are placed in top row.
Hint: Put $\quad S_{n}=200, a=20, d=-1$ in formula $\mathrm{S}_{n}=\frac{n}{2}[2 a+(n-1) d]$
So $\quad 41 n-n^{2}=400$

$$
\begin{array}{ll}
\Rightarrow & n=16,25 \\
\therefore & n=25 \text { not possible }
\end{array}
$$

because if $n=25$ then the number of logs in top row

$$
\begin{aligned}
& =-4 \\
\therefore \quad n & =16 \text { and } a_{16}=5 .
\end{aligned}
$$

WORKSHEET-48

1. $a=10, d=7-10=-3$

$$
a_{30}=a+29 d=10+29(-3)=-77
$$

2. $\quad a_{n}=2 n+1 \quad \therefore a_{1}=2 \times 1+1=3$

Now, $\mathrm{S}_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)=\frac{n}{2}(3+2 n+1)$

$$
=n(n+2)
$$

3. No.

$$
\text { Let } a_{n}=68
$$

$\Rightarrow \quad a+(n-1) \times d=68$
$\Rightarrow \quad 7+(n-1) \times 3=68$
$\Rightarrow \quad 3 n=64 \Rightarrow n=\frac{64}{3}$
which is not a whole number so $a_{n}=68$ not possible.
4. General term is $a_{n}=(-1)^{n} 3^{n+1}$

Substituting $n=1,2,3$, 4 successively we get

$$
\begin{gathered}
a_{1}=(-1) 3^{2}=-9, a_{2}=(-1)^{2} 3^{3}=27 \\
a_{3}=(-1)^{3} 3^{4}=-81, a_{4}=(-1)^{4} 3^{5}=243
\end{gathered}
$$

Therefore, first four terms are $-9,27,-81$, 243.
5. The sequence is $23,21,19, \ldots5$

$$
\begin{aligned}
& \therefore & a & =23 \\
& & d & =21-(23)=-2 \\
& \therefore & & a_{n}
\end{aligned}=5
$$

Hence, number of rows is 10 .
6. In the series $(-5)+(-8)+(-11)+\ldots . .+(-230)$, $a=-5, d=-8-(-5)=-3$.
Let the number of terms be n, then
$-230=-5+(n-1)(-3)$

$$
\left[\because a_{n}=a+(n-1) d\right]
$$

$\Rightarrow n-1=\frac{-225}{-3} \Rightarrow n=76$
Now, sum of first n terms is given by

$$
\begin{aligned}
\mathrm{S}_{n} & =\frac{n}{2}\left(a+a_{n}\right) \\
& =\frac{76}{2}(-5-230) \quad\left(\because a_{n}=-230\right) \\
& =-38 \times 235=-8930
\end{aligned}
$$

7. $n=50 ; a=$ first term; $d=$ common difference $S_{10}=210=$ sum of first 10 terms
Sum of last 15 terms $=2565$
Now, $\quad S_{10}=210$
$\Rightarrow \quad a+(a+d)+\ldots+(a+9 d)=210$
$\Rightarrow \quad 10 a+d(1+2+\ldots+9)=210$

$$
\begin{array}{lc}
\Rightarrow & 10 a+45 d=210 \\
\Rightarrow & 2 a+9 d=42 \quad \ldots . . .(i) \\
\Rightarrow & \text { Also sum of last } 15 \text { terms }=2565 \\
\Rightarrow & a_{50}+a_{49}+\ldots .+a_{36}=2565 \\
\Rightarrow & (a+49 d)+(a+48 d)+\ldots+(a+35 d)=2565 \\
\Rightarrow & 15 a+d(35+36+\ldots+49)=2565 \\
& \text { (Sum of AP } 35,36, \ldots, 49) \\
& =\frac{15}{2}(35+49)=\frac{84 \times 15}{2}=630 \\
\Rightarrow & \\
\Rightarrow & a+d(630)=2565 \tag{ii}\\
\Rightarrow & a+42 d=171 \\
\Rightarrow & 2 a+84 d=342
\end{array}
$$

Subtract equation (i) from equation (iii),

$$
\begin{aligned}
75 d & =300 \\
d & =\frac{300}{75}=4
\end{aligned}
$$

From equation (ii),
$\Rightarrow a=171-42 \times 4=171-168=3$
$\therefore a=3 ; d=4 \quad \therefore \quad$ AP is: $3,7,11, \ldots$.
8. To pick up the first potato, distance run

$$
=2(5) \mathrm{m}
$$

To pick up the second potato, distance run

$$
=2(5+3)=2(8) \mathrm{m}
$$

To pick up the third potato, distance run

$$
=2(8+3)=2(11) \mathrm{m}
$$

\therefore Sequence of the distance run is: 2 (5), 2 (8), 2 (11), \qquad till 10 terms.
\therefore Total distance covered

$$
\begin{aligned}
& =2[5+8+11+\ldots \ldots \ldots .+10 \text { terms }] \\
& =2\left[\frac{10}{2}\{2(5)+(10-1)(3)\}\right] \\
& =2[5(37)]=10 \times 37=370 \mathrm{~m} .
\end{aligned}
$$

WORKSHEET-49

1. $\because 21$ is an odd number $\quad \therefore a_{21}=1$
$\therefore 40$ is an even number $\quad \therefore a_{40}=-1$
2. Hint: $\quad d=\sqrt{8}-\sqrt{2}=2 \sqrt{2}-\sqrt{2}=\sqrt{2}$.

$$
a=\sqrt{2}
$$

Use $\quad \mathrm{S}_{n}=\frac{n}{2}[2 a+(n-1) d]$.
3. Hint:

$$
a+6 d=34
$$

$$
\text { and } a+12 d=64
$$

$$
\Rightarrow \quad a=4, d=5
$$

4. All three digit numbers which are multiple of 11 are: $110,121,132,143, \ldots, 990$
\therefore This is an AP

$$
\begin{array}{rlrl}
\text { as } & & a_{n} & =a+(n-1) d \\
\Rightarrow & & 990 & =110+(n-1) 11 \\
\Rightarrow & n-1 & =80 \\
\Rightarrow & n & n & =81
\end{array}
$$

\therefore Sum of all terms of above AP

$$
\begin{aligned}
& =\frac{n}{2}\left\{a+a_{n}\right\}=\frac{81}{2}\{110+990\} \\
& =\frac{81}{2} \times 1100=44955 .
\end{aligned}
$$

5. 28th term

Hint: Let $a_{n}<0$

$$
\begin{array}{ll}
\therefore & \frac{83}{4}-\frac{3 n}{4}<0 \Rightarrow 83-3 n<0 \\
\Rightarrow & 3 n>83 \quad \Rightarrow \quad n>27 \frac{2}{3} \\
\Rightarrow & n=28 .
\end{array}
$$

6. Numbers are: $504,511,518, \ldots, 896$

Which forms an A.P.

$$
\begin{array}{rlrl}
& & a & =504 ; d=7 \\
\text { Let } & & a_{n} & =896 \\
\Rightarrow & a+(n-1) \cdot d & =896 \\
\Rightarrow & & (n-1) \cdot 7 & =896-504=392 \\
\Rightarrow & n-1=\frac{392}{7} & =56 \Rightarrow n=57 \\
& & & \\
& & \text { Sum }= & \frac{n}{2}\{a+l\}=\frac{57}{2}\{504+896\} \\
& & & \\
& & \frac{57}{2} \times 1400=39900 .
\end{array}
$$

7.6 or 12

Hint: Let

$$
\mathrm{S}_{n}=72
$$

$\Rightarrow \frac{n}{2}[2 a+(n-1) d]=72$.
8. $n=9$; angle $=32^{\circ}$.

Hint: Sum of all angles $=360^{\circ}$.
9. Volume of concrete required to build the 1st step $=\frac{1}{4} \times \frac{1}{2} \times 50 \mathrm{~m}^{3}$
Volume of concrete required for 2 nd step $=\frac{2}{4} \times\left(\frac{1}{2}\right) \times 50 \mathrm{~m}^{3}$
Volume of concrete required for
3rd step $=\frac{3}{4} \times\left(\frac{1}{2}\right) \times 50 \mathrm{~m}^{3}$

Volume of concrete required for 15th step.

$$
=\frac{15}{4} \times \frac{1}{2} \times 50 \mathrm{~m}^{3}
$$

\therefore Total volume of concrete required:

$$
\begin{aligned}
\mathrm{S}_{15} & =\frac{50}{8}[1+2+3+\ldots \ldots \ldots . .+15] \\
& =\frac{25}{4} \times \frac{15}{2} \times(1+15) \quad\left[\because S_{n}=\frac{n}{2}\{a+l\}\right] \\
& =\frac{25 \times 15 \times 16}{8}=750 \mathrm{~m}^{3} .
\end{aligned}
$$

WORKSHEET-50

1.

$$
\begin{array}{rlrl}
& & a_{n} & =2 n+1 \\
a_{1} & =3 \\
a_{2} & =5 \\
a_{3} & =7 \\
& \therefore & a_{1}+a_{2}+a_{3} & =15 .
\end{array}
$$

2. Hint: Use: $a_{n}=a+(n-1) d$.
3. $a_{18}-a_{13}=a+17 d-a-12 d=5 d$

$$
=5 \times 5=25 . \quad[\because \quad d=5]
$$

4. $10 n-2$

Hint: $a_{n}=\mathrm{S}_{n}-\mathrm{S}_{n-1}$

$$
\begin{aligned}
& =5 n^{2}+3 n-5(n-1)^{2}-3(n-1) \\
& =5 n^{2}+3 n-5\left(n^{2}+1-2 n\right)-3 n+3 \\
& =5 n^{2}+3 n-5 n^{2}-5+10 n-3 n+3 \\
a_{n} & =10 n-2 .
\end{aligned}
$$

5. Here

$$
\begin{aligned}
a & =-11 \\
d & =-7-(-11)=4 \\
a_{n} & =49
\end{aligned}
$$

$$
\begin{array}{ll}
\therefore & a_{n}=a+(n-1) \cdot d \\
\Rightarrow & \\
\Rightarrow & 49 \\
\Rightarrow & \\
=-11+(n-1) \cdot 4
\end{array}
$$

as n is even \Rightarrow there will be two middle terms which are $\frac{16}{2}$,i.e., 8 th and 9 th term

$$
\begin{array}{ll}
\therefore & a_{8}=a+7 d=-11+7 \times 4=17 \\
\text { and } & a_{9}=a+8 d=-11+8 \times 4=21 .
\end{array}
$$

6. Hint: $\mathrm{S}_{1}=\frac{n}{2}\{2 a+(n-1) d\}$

$$
\begin{aligned}
& \mathrm{S}_{2}=\frac{2 n}{2}\{2 a+(2 n-1) d\} \\
& \mathrm{S}_{3}=\frac{3 n}{2}\{2 a+(3 n-1) d\}
\end{aligned}
$$

Calculate $3\left(\mathrm{~S}_{2}-\mathrm{S}_{1}\right)$.
7.900

Hint: $\mathrm{S}_{24}=12\left(a_{1}+a_{24}\right)$
Also note:

$$
\begin{array}{r}
a_{5}+a_{20}=a_{1}+a_{24} \\
a_{10}+a_{15}=a_{1}+a_{24}
\end{array}
$$

Hence, given relation gives:

$$
\begin{array}{rlrl}
& 3\left(a_{1}+a_{24}\right) & =225 \\
a_{1}+a_{24} & =75 \\
\therefore & S_{24} & =900 .
\end{array}
$$

8.7, 8, 9

Hint: Let the three numbers be:

$$
a-d, a, a+d .
$$

9. We have $\frac{a^{n}+b^{n}}{a^{n-1}+b^{n-1}}=\frac{a+b}{2}$

$$
\begin{array}{cc}
\Rightarrow & 2 a^{n}+2 b^{n}=a^{n}+a b^{n-1}+b a^{n-1}+b^{n} \\
\Rightarrow & a^{n}+b^{n}-a b^{n-1}-b a^{n-1}=0 \\
\Rightarrow & a^{n-1}(a-b)-b^{n-1}(a-b)=0 \\
\Rightarrow & \quad(a-b)\left(a^{n-1}-b^{n-1}\right)=0 \\
\Rightarrow & \quad a=b \text { or }\left(\frac{a}{b}\right)^{n-1}=1
\end{array}
$$

Taking $\left(\frac{a}{b}\right)^{n-1}=1 \Rightarrow\left(\frac{a}{b}\right)^{n-1}=\left(\frac{a}{b}\right)^{0}$

$$
\begin{array}{ccr}
\Rightarrow & n-1=0 \quad \therefore & n=1 . \\
& \Rightarrow & \text { OR } \\
& a+(n-1) \times d=x
\end{array}
$$

$$
\begin{aligned}
& \Rightarrow \quad 1+(n-1) \times 3=x \\
& \Rightarrow \quad 3 n-2=x \\
& \therefore \quad \mathrm{~S}=\frac{n}{2}(a+l) \\
& 590=\frac{n}{2}(1+x) \\
& 1180=n(1+3 n-2) \\
& 1180=3 n^{2}-n \\
& \Rightarrow \quad 3 n^{2}-n-1180=0 \\
& \Rightarrow \quad 3 n^{2}-60 n+59 n-1180=0 \\
& \Rightarrow \quad 3 n(n-20)+59(n-20)=0 \\
& \Rightarrow \quad n=\frac{-59}{3} \text { (Reject) or } n=20 \\
& \therefore \text { From }(i) \Rightarrow x=3 \times 20-2 \\
& x=60-2 \Rightarrow x=58 \text {. }
\end{aligned}
$$

WORKSHEET-51

1. Let $x=n^{\text {th }}$ term

$$
\begin{aligned}
& \therefore \quad x=2+(n-1) 3 \Rightarrow x=3 n-1 \\
& \therefore \quad S_{n}=\frac{n}{2}\{2+x\} \quad \Rightarrow 155=\frac{n}{2}\{2+3 n-1\} \\
& \Rightarrow 310=3 n^{2}+n \quad \Rightarrow 3 n^{2}+n-310=0 \\
& \Rightarrow n(3 n+31)-10(3 n+31)=0 \Rightarrow n=10 \\
& \therefore x=29 .
\end{aligned}
$$

2. Hint: Use $a_{n}=a+(n-1) \cdot d$.
3. 19668

Hint: The sequence is:
103, 119, 135, 791.
4. $n=6$

Hint: Let $a=3, b=17$

$$
\begin{array}{ll}
\therefore & a, x_{1}, x_{2}, \ldots \ldots, x_{n^{\prime}} b \text { are in A.P. } \\
\therefore & d=\frac{b-a}{n+1}=\frac{14}{n+1} \\
\therefore & x_{1}=a+d=3+\frac{14}{n+1}=\frac{3 n+17}{n+1} . \\
& x_{n}=a+n d=3+\frac{14 n}{n+1}=\frac{17 n+3}{n+1} \tag{ii}\\
& \frac{x_{1}}{x_{n}}=\frac{1}{3} \Rightarrow 3 x_{1}=x_{n}
\end{array}
$$

\therefore Using (i) and (ii), we get

$$
n=6
$$

5. Hint: $\mathrm{S}_{1}=\frac{n}{2}(n+1) ; a=1, d=1$

$$
\mathrm{S}_{2}=n^{2} ; a=1, d=2
$$

$$
\mathrm{S}_{3}=\frac{n}{2}(3 n-1) ; a=1, d=3
$$

$$
\therefore \mathrm{S}_{1}+\mathrm{S}_{3}=\frac{n}{2}(n+1)+\frac{n}{2}(3 n-1)
$$

$$
\mathrm{S}_{1}+\mathrm{S}_{3}=2 n^{2} \quad \therefore \quad \mathrm{~S}_{1}+\mathrm{S}_{3}=2 \mathrm{~S}_{2}
$$

6. Let $\quad a_{1}=a$ and common difference $=d$.

Now, $\quad a_{1}+a_{7}+a_{10}+a_{21}+a_{24}+a_{30}=540$
$a+a+6 d+a+9 d+a+20 d+a+23 d+a+29 d$
$\Rightarrow 6 a+87 d=540$
$\Rightarrow 2 a+29 d=180$
Further, the required sum

$$
\begin{aligned}
\mathrm{S}_{30} & =\frac{30}{2}\left(a_{1}+a_{30}\right)=15(a+a+29 d) \\
& =15(2 a+29 d) \\
& =15 \times 180 \quad \text { [Using equation }(i)] \\
& =2700
\end{aligned}
$$

7. Hint: Let the first term and the common difference be a and d respectively.

$$
\begin{aligned}
a_{9} & =0 \Rightarrow a+8 d=0 \Rightarrow a=-8 d \\
a_{29} & =a+28 d=-8 d+28 d=20 d \\
a_{19} & =a+18 d=-8 d+18 d=10 d
\end{aligned}
$$

8. $2,6,10,14$.

Hint: Let the four parts be:

$$
a-3 d, a-d, a+d, a+3 d
$$

OR

The sequence is: $150,146,142$,
\therefore Total number of workers who worked all the n days

$$
\begin{aligned}
& =150+146+\ldots \ldots .+n \text { terms. } \\
\therefore \quad & =n(152-2 n)
\end{aligned}
$$

Now had the workers not dropped then the work would have finished in $(n-8)$ days with 150 workers working on each day.
\therefore Total number of workers who would have worked all the n days is $150(n-8)$.

$$
\begin{array}{ll}
\therefore & \\
\therefore & n(152-2 n)=150(n-8) \\
\Rightarrow & \\
n^{2}-n-600 & =0
\end{array}
$$

$$
\begin{array}{rlrl}
\Rightarrow & (n-25)(n+24) & =0 \\
\Rightarrow & n=25 \text { or } n & =-24 \quad \text { (Reject) } \\
& \therefore & n & =25 .
\end{array}
$$

WORKSHEET-52

1. As sum of first n odd natural number is $=n^{2}$ \therefore replacing n by 20 we get the sum of first 20 odd natural number $=400$.
2. Given,

$$
\mathrm{AP}=-11,-8,-5, \ldots, 49
$$

where

$$
a=-11, d=-8+11=3
$$

\therefore From the end $t_{4}=l-(n-1) d$

$$
\begin{aligned}
& =49-(4-1) \cdot 3 \\
& =49-9=40 .
\end{aligned}
$$

3.

$$
\begin{aligned}
\mathrm{S}_{n} & =2 n^{2}+5 n \\
\Rightarrow \quad \mathrm{~S}_{n-1} & =2(n-1)^{2}+5(n-1) \\
& =2\left(n^{2}+1-2 n\right)+5 n-5 \\
& =2 n^{2}+n-3 \\
n^{\text {th }} \text { term } & =\mathrm{S}_{n}-\mathrm{S}_{n-1} \\
& =2 n^{2}+5 n-\left(2 n^{2}+n-3\right) \\
& =4 n+3 .
\end{aligned}
$$

4. The numbers are: $12,15,18, \ldots, 99$ which is an A.P.

$$
\begin{aligned}
& \text { Let } \\
& a_{n}=a+(n-1) \cdot d \\
& \Rightarrow \quad 99=12+(n-1) \text {. } \\
& \Rightarrow \quad=9+3 n \\
& 3 n=90 \\
& \Rightarrow \quad n=30
\end{aligned}
$$

5. First term of the A.P. $=a=-\frac{4}{3}$

Common difference of the A.P. $=d$

$$
=-1-\left(-\frac{4}{3}\right)=\frac{1}{3}
$$

Let the A.P. consists n terms.

$$
\begin{equation*}
\therefore \quad n^{\text {th }} \text { term }=4 \frac{1}{3}=\frac{13}{3} \tag{i}
\end{equation*}
$$

But $n^{\text {th }}$ term is given by

$$
\begin{align*}
a_{n} & =a+(n-1) d \\
& =-\frac{4}{3}+(n-1) \frac{1}{3} \\
& =\frac{n}{3}-\frac{5}{3} \tag{ii}
\end{align*}
$$

$$
\begin{aligned}
S_{n} & =\frac{n}{2}[2 \mathrm{~A}+(n-1) \mathrm{D}] \\
S_{11} & =\frac{11}{2}\left[2\left(\frac{a-b}{a+b}\right)+(11-1)\left(\frac{2 a-b}{a+b}\right)\right] \\
& =\frac{11}{2}\left[\frac{2 a-2 b+20 a-10 b}{a+b}\right] \\
& =\frac{11}{2}\left[\frac{22 a-12 b}{a+b}\right]=\frac{11(11 a-6 b)}{a+b}
\end{aligned}
$$

7. Let the first term and the common difference of the given A.P. be a and d respectively.

According to the given condition,

$$
\begin{aligned}
& \frac{a_{11}}{a_{18}}=\frac{2}{3} \Rightarrow \frac{a+10 d}{a+17 d}=\frac{2}{3} \\
& \Rightarrow 3 a+30 d=2 a+34 d \\
& \Rightarrow \quad\left.\quad a \operatorname{Using} a_{n}=a+(n-1) d\right] \\
& \Rightarrow \quad 4 d
\end{aligned}
$$

Now, $\quad \frac{a_{5}}{a_{21}}=\frac{a+4 d}{a+20 d}$

$$
\begin{aligned}
& \left.=\frac{4 d+4 d}{4 d+20 d} \text { (Substituting } a=4 d\right) \\
& =\frac{8 d}{24 d}=\frac{1}{3}
\end{aligned}
$$

i.e., $a_{5}: a_{21}=1: 3$.

$$
\text { Now, } \begin{aligned}
\frac{S_{5}}{S_{21}}= & \frac{\frac{5}{2}[2 a+4 d]}{\frac{21}{2}[2 a+20 d]} \\
& {\left[\text { Using } S_{n}=\frac{n}{2}\{2 a+(n-1) d\}\right] } \\
= & \frac{5(8 d+4 d)}{21(8 d+20 d)}
\end{aligned}
$$

[Substituting $a=4 d$]

$$
=\frac{60 d}{588 d}=\frac{5}{49}
$$

i.e., $S_{5}: S_{21}=5: 49$.
8. Distances covered by a girl during 1st minute, 2nd minute, 3rd minute,..... are respectively $20 \mathrm{~m}, 18 \mathrm{~m}, 16 \mathrm{~m}, \ldots . . .$. which form an A.P. with first term $(a)=20 \mathrm{~m}$ and common difference $(d)=-2 \mathrm{~m}$.
(i) Distance covered in 10th minute
$=10$ th term of the A.P.
$=a+(10-1) d=20+9 \times(-2)=20-18$
$=2 \mathrm{~m}$.
(ii) Distance covered in 10 minutes
= sum of first 10 terms
$=\frac{10}{2}[2 a+(10-1) d]=5[2 \times 20+9(-2)]$
$=5 \times 22=110 \mathrm{~m}$.

CHAPTER TEST

1. $\quad \mathrm{S}_{n}=\frac{n}{2}\left(a+a_{n}\right) \Rightarrow 399=\frac{n}{2}(1+20)$

$$
\Rightarrow 21 n=2 \times 399 \Rightarrow n=38
$$

2. $\because a_{p}=\frac{3 p-1}{6}$

$$
\therefore \quad a_{n}=\frac{3 n-1}{6} \text { and } a_{1}=\frac{1}{3}
$$

Now, $\quad S_{n}=\frac{n}{2}\left(\frac{1}{3}+\frac{3 n-1}{6}\right)=\frac{n}{12}(3 n+1)$.
3. $a+d=13$ and $a+4 d=25$
$\Rightarrow \quad a=9, d=4$
Now, $a_{7}=a+6 d=9+24=33$.
4. $a=7 ; a_{n}=49$

$$
\begin{aligned}
\text { Now, } & & \mathrm{S}_{n} & =420 \\
\Rightarrow & & 420 & =\frac{n}{2}(7+49) \\
\Rightarrow & & n & =15 \\
\therefore & & a_{n} & =a+(n-1) d \\
\Rightarrow & & 49 & =7+14 d \\
\Rightarrow & & d & =3
\end{aligned}
$$

5. True, the reason is:

$$
\begin{aligned}
d & =14-8=6, a=8 \\
a_{53} & =a+52 d=8+52 \times 6=320 \\
a_{41} & =a+40 d=8+40 \times 6=248
\end{aligned}
$$

Now, $a_{53}-a_{41}=72$.
6.

$$
\begin{array}{rlrl}
\cdot & a_{4} & =11 \\
\Rightarrow & a+3 d & =11 \\
& & a_{5}+a_{7} & =34 \\
\Rightarrow & a+4 d+a+6 d & =34 \\
\Rightarrow & 2 a+10 d & =34 \\
\Rightarrow & a+5 d & =17 \tag{ii}
\end{array}
$$

Subtracting (ii) from (i), we get

$$
\begin{array}{rlrl}
\Rightarrow & -2 d & =-6 \\
d & =3 .
\end{array}
$$

7. Let the profit to be ceased at nth day.

Sale on first day $=` 8100$
Sale on second day $=`(8100-150)$

$$
=` 7950
$$

So, the sale (in `) will be day by day as follows: 8100, 7950, 7800, \(\qquad\) \(n\) terms Here, \(a=8100, d=-150\) The profit will be ceased when it is equal to or less than ` 1500 .
Therefore, $8100+(n-1) \times(-150) \leq 1500$

$$
\left[\because a_{n}=a+(n-1) d\right]
$$

$\Rightarrow 8100-150 n+150 \leq 1500$
$\Rightarrow 150 n \geq 6750 \Rightarrow n \geq 45$
Hence, the profit to be ceased at 45th day.
8. If x, y and z are in A.P., then

$$
\begin{equation*}
y=\frac{x+z}{2} \tag{i}
\end{equation*}
$$

Now, in the given equation,

$$
\begin{aligned}
\text { LHS } & =(x+2 y-z)(2 y+z-x)(z+x-y) \\
& =(x+x+z-z)(x+z+z-x)(2 y-y)
\end{aligned}
$$

[Using equation (i)]

$$
\begin{array}{lr}
=2 x \times 2 z \times y=4 x y z & \\
=\text { RHS. } \quad \text { Hence proved. }
\end{array}
$$

9. (i) Number of classes $=12$
\because Each class has 3 sections.
\therefore Number of plants planted by class I

$$
=1 \times 3=3
$$

Number of plants planted by class II

$$
=2 \times 3=6
$$

Number of plants planted by class III

$$
=3 \times 3=9
$$

Number of plants planted by class IV

$$
=4 \times 3=12
$$

Number of plants planted by class XII

$$
=12 \times 3=36
$$

The numbers $3,6,9,12, \ldots \ldots . . ., 36$ are in A.P.

Here, $\quad a=3$ and $d=6-3=3$
\because Number of classes $=12$
i.e., $\quad n=12$
\therefore Sum the n terms of the above A.P., is given by

$$
\begin{aligned}
S_{12} & =\frac{12}{2}[2(3)+(12-1) 3] \\
& {\left[\text { Using } S_{n}=\frac{n}{2}[2 a+(n-1) d]\right] } \\
& =6[6+11 \times 3] \\
& =6[6+33] \\
& =6 \times 39=234
\end{aligned}
$$

Thus, the total number of trees planted $=234$.
(ii) Sum of an arithmetic progression upto n terms
(iii) Love for environment

Chapter
 6 INTRODUCTION TO TRIGONOMETRY

WORKSHEET-54

1. As $\quad \sin A=\cos B=\sin (90-B)$

$$
\Rightarrow \quad A=90-B
$$

$$
\mathrm{A}+\mathrm{B}=90^{\circ}
$$

2. As $\cos (90-\theta)=\sin \theta$

$$
\sin (90-\theta)=\cos \theta
$$

$\sin \theta \cos (90-\theta)+\cos \theta \sin (90-\theta)$

$$
\begin{aligned}
& =\sin ^{2} \theta+\cos ^{2} \theta \\
& =1
\end{aligned}
$$

3. $\sin \theta=\frac{24}{25} \Rightarrow \sin ^{2} \theta=\left(\frac{24}{25}\right)^{2}$

$$
\begin{aligned}
& \Rightarrow \quad 1-\sin ^{2} \theta=1-\frac{24^{2}}{25^{2}} \\
& \Rightarrow \quad \cos ^{2} \theta=\frac{7^{2}}{25^{2}} \\
& \Rightarrow \quad \cos \theta=\frac{7}{25}
\end{aligned}
$$

Now, $\tan \theta+\sec \theta=\frac{\sin \theta}{\cos \theta}+\frac{1}{\cos \theta}$

$$
=\frac{\frac{24}{25}}{\frac{7}{25}}+\frac{1}{\frac{7}{25}}=\frac{24}{7}+\frac{25}{7}=\frac{49}{7}=7
$$

4. $\tan \theta=\frac{\sin \theta}{\sqrt{1-\sin ^{2} \theta}}$.
5. $\cot 25^{\circ}+\tan 41^{\circ}$.
6. LHS $=\sqrt{\frac{\cot ^{2} \theta}{1+\cot ^{2} \theta}}$

$$
=\sqrt{\frac{\cot ^{2} \theta}{\operatorname{cosec}^{2} \theta}}
$$

$$
\left\{\because \operatorname{cosec}^{2} \theta-\cot ^{2} \theta=1\right\}
$$

$$
=\sqrt{\frac{\cos ^{2} \theta}{\sin ^{2} \theta \times \frac{1}{\sin ^{2} \theta}}}\left\{\because \cot \theta=\frac{\cos \theta}{\sin \theta}\right\}
$$

$$
=\sqrt{\cos ^{2} \theta}=\cos \theta=\text { RHS }
$$

7. $\frac{4}{\cot ^{2} 30^{\circ}}+\frac{1}{\sin ^{2} 60^{\circ}}-\cos ^{2} 45^{\circ}$

$$
\begin{aligned}
& =\frac{4}{(\sqrt{3})^{2}}+\frac{1}{\left(\frac{\sqrt{3}}{2}\right)^{2}}-\left(\frac{1}{\sqrt{2}}\right)^{2} \\
& =\frac{4}{3}+\frac{4}{3}-\frac{1}{2}=\frac{8+8-3}{6} \\
& =\frac{13}{6}
\end{aligned}
$$

8. $\sin (x+y)=1$ and $\cos (x-y)=\frac{\sqrt{3}}{2}$
$\Rightarrow \sin (x+y)=\sin 90^{\circ}$ and $\cos (x-y)=\cos 30^{\circ}$
$\Rightarrow x+y=90^{\circ}$ and $x-y=30^{\circ}$
Adding and subtracting, we get respectively
$2 x=120^{\circ}$ and $2 y=60^{\circ}$
i.e., $x=60^{\circ}$ and $y=30^{\circ}$.
9. $\operatorname{cosec} A=\sqrt{10}$

$$
\sin A=\frac{1}{\operatorname{cosec} A}=\frac{1}{\sqrt{10}}
$$

$\cos A=\sqrt{1-\sin ^{2} A}=\sqrt{1-\frac{1}{10}}=\frac{3}{\sqrt{10}}$
$\tan A=\frac{\sin A}{\cos A}=\frac{1}{3}$
$\cot A=\frac{1}{\tan A}=3$
$\sec A=\frac{1}{\cos A}=\frac{\sqrt{10}}{3}$.
10. Hint: RHS $=\frac{\sin ^{2} A}{1-\cos A}=\frac{1-\cos ^{2} A}{1-\cos A}$

$$
=\frac{(1-\cos \mathrm{A})(1+\cos \mathrm{A})}{1-\cos \mathrm{A}}
$$

OR
Hint: LHS $=\frac{\sin \theta\left(1-2 \sin ^{2} \theta\right)}{\cos \theta\left(2 \cos ^{2} \theta-1\right)}$.

WORKSHEET-55

1.

As $\quad \mathrm{AC}=25 \mathrm{~cm} ; \mathrm{BC}=7 \mathrm{~cm}$
\Rightarrow Using Pythagoras theorem

$$
\mathrm{AC}^{2}=\mathrm{AB}^{2}+\mathrm{BC}^{2}
$$

$\Rightarrow \quad(25)^{2}=(\mathrm{AB})^{2}+(7)^{2}$
$\Rightarrow \quad 625-49=A B^{2}$
$\Rightarrow \quad \mathrm{AB}^{2}=576=(24)^{2}$
$\Rightarrow \quad \mathrm{AB}=24$
$\therefore \quad \tan \mathrm{A}=\frac{\mathrm{BC}}{\mathrm{AB}}=\frac{7}{24}$.
2.0

Hint: Divide numerator and denominator by $\cos \theta$.
3. As

$$
\begin{aligned}
\cos 52^{\circ}= & \cos \left(90-38^{\circ}\right) \\
= & \sin 38^{\circ} \\
& \quad[\because \cos (90-\theta)=\sin \theta]
\end{aligned}
$$

$\therefore \sin 38^{\circ}-\cos 52^{\circ}=\sin 38^{\circ}-\sin 38^{\circ}=0$.
4. Hint: $\angle \mathrm{A}=30^{\circ}, \angle \mathrm{B}=90^{\circ}, \angle \mathrm{C}=60^{\circ}$.
5. $\sec \theta+\tan \theta=\frac{1}{\cos \theta}+\frac{\sin \theta}{\cos \theta}=\frac{(1+\sin \theta)}{\cos \theta}$

$$
\begin{aligned}
& =\frac{1+\sin \theta}{\sqrt{1-\sin ^{2} \theta}}=\frac{1+\frac{a}{b}}{\sqrt{1-\frac{a^{2}}{b^{2}}}}=\frac{b+a}{\sqrt{b^{2}-a^{2}}} \\
& =\frac{b+a}{\sqrt{b+a} \sqrt{b-a}}=\sqrt{\frac{b+a}{b-a}} .
\end{aligned}
$$

6. $\sin \mathrm{A}=\frac{7}{25}, \cos \mathrm{~A}=\frac{24}{25}$,
$\sin C=\frac{24}{25}$ and $\cos C=\frac{7}{25}$.
7. $\frac{\cos 60^{\circ}+\sin 30^{\circ}-\cot 30^{\circ}}{\tan 60^{\circ}+\sec 45^{\circ}-\operatorname{cosec} 45^{\circ}}$
$=\frac{\frac{1}{2}+\frac{1}{2}-\sqrt{3}}{\sqrt{3}+\sqrt{2}-\sqrt{2}}=\frac{1-\sqrt{3}}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}}$
$=\frac{\sqrt{3}-3}{3}$.
8. Given expression

$$
\begin{aligned}
& =\frac{\cot \theta \tan \left(90^{\circ}-\theta\right)-\sec \left(90^{\circ}-\theta\right) \operatorname{cosec} \theta}{\sin \theta \cos \left(90^{\circ}-\theta\right)+\cos \theta \sin \left(90^{\circ}-\theta\right)} \\
& =\frac{\cot \theta \cot \theta-\operatorname{cosec} \theta \operatorname{cosec} \theta}{\sin \theta \sin \theta+\cos \theta \cos \theta} \\
& =\frac{\cot ^{2} \theta-\operatorname{cosec}^{2} \theta}{\sin ^{2} \theta+\cos ^{2} \theta} \\
& =\operatorname{cosec}^{2} \theta-1-\operatorname{cosec}^{2} \theta \\
& =-1 .
\end{aligned} \quad\left(\because \sin ^{2} \theta+\cos ^{2} \theta=1\right) .
$$

9. Draw $\triangle \mathrm{ABC}$ with

$$
\mathrm{AB}=\mathrm{BC}=\mathrm{AC}=a \text { (say) }
$$

Draw AD $\perp \mathrm{BC}$
$\therefore \quad \angle \mathrm{BAD}=\angle \mathrm{DAC}=\theta=30^{\circ}$
and $\mathrm{BD}=\mathrm{DC}=a / 2$
$\therefore \quad \sin \theta=\frac{\mathrm{BD}}{\mathrm{AB}}=\frac{a / 2}{a}=\frac{1}{2}$
$\Rightarrow \sin 30^{\circ}=\frac{1}{2}$.

10. As $a^{2}+b^{2}=(a+b)^{2}-2 a b$
\therefore Taking $a=\sin ^{2} \theta ; b=\cos ^{2} \theta$, we get
$\left(\sin ^{2} \theta\right)^{2}+\left(\cos ^{2} \theta\right)^{2}=\left(\sin ^{2} \theta+\cos ^{2} \theta\right)^{2}$
$-2 \sin ^{2} \theta \cos ^{2} \theta$
$\Rightarrow \sin ^{4} \theta+\cos ^{4} \theta=1-2 \sin ^{2} \theta \cos ^{2} \theta$
also as $\quad a^{3}+b^{3}=(a+b)\left(a^{2}+b^{2}-a b\right)$
Put

$$
a=\sin ^{2} \theta ; b=\cos ^{2} \theta
$$

MATHEMATTCSTX

$$
\begin{align*}
& \Rightarrow\left(\sin ^{2} \theta\right)^{3}+\left(\cos ^{2} \theta\right)^{3} \\
& =\left[\sin ^{2} \theta+\cos ^{2} \theta\right]\left[\sin ^{4} \theta+\cos ^{4} \theta\right. \\
& \left.\Rightarrow \quad-\sin ^{2} \theta \cos ^{2} \theta\right] \\
& \Rightarrow \sin ^{6} \theta+\cos ^{6} \theta=1 \cdot\left[1-2 \sin ^{2} \theta \cos ^{2} \theta\right. \\
& \left.\quad-\sin ^{2} \theta \cos ^{2} \theta\right][\because U \operatorname{Using}(i)] \\
& \quad=1-3 \sin ^{2} \theta \cos ^{2} \theta \tag{ii}
\end{align*}
$$

\therefore Consider

$$
\begin{aligned}
& \text { LHS }=2\left(\sin ^{6} \theta+\cos ^{6} \theta\right) \\
& -3\left(\sin ^{4} \theta+\cos ^{4} \theta\right) \\
& =2\left(1-3 \sin ^{2} \theta \cos ^{2} \theta\right) \\
& -3\left(1-2 \sin ^{2} \theta \cos ^{2} \theta\right) \\
& {[\because \text { Using }(i) \text { and }(i i)]} \\
& =2-6 \sin ^{2} \theta \cos ^{2} \theta-3+6 \sin ^{2} \theta \cos ^{2} \theta \\
& =-1=\text { RHS } \quad \text { Hence proved. }
\end{aligned}
$$

$$
=-1=\text { RHS }
$$

OR

LHS $=\frac{\cot A-\cos A}{\cot A+\cos A}=\frac{\frac{\cos A}{\sin A}-\cos A}{\frac{\cos A}{\sin A}+\cos A}$

$$
=\frac{\cos \mathrm{A}\left(\frac{1}{\sin \mathrm{~A}}-1\right)}{\cos \mathrm{A}\left(\frac{1}{\sin \mathrm{~A}}+1\right)}
$$

$$
=\frac{\frac{1}{\sin A}-1}{\frac{1}{\sin A}+1}=\frac{\operatorname{cosec} A-1}{\operatorname{cosec} A+1}=\text { RHS }
$$

WORKSHEET - 56

1. Hint: $\tan 5^{\circ}=\cot 85^{\circ} ; \tan 25^{\circ}=\cot 65^{\circ}$.
2. Hint: $(1+\sin \theta)(1-\sin \theta)=\cos ^{2} \theta$

$$
=\frac{1}{\sec ^{2} \theta} .
$$

3. $8 \tan x=15 \Rightarrow \tan ^{2} x=\frac{225}{64}$

$$
\begin{aligned}
& \Rightarrow \sec ^{2} x-1=\frac{225}{64} \Rightarrow \sec ^{2} x=\frac{289}{64} \\
& \Rightarrow \quad \sec x=\frac{17}{8} \quad \Rightarrow \cos x=\frac{8}{17}
\end{aligned}
$$

Now, $\sin x-\cos x=\sqrt{1-\cos ^{2} x}-\cos x$

$$
\begin{aligned}
& =\sqrt{1-\frac{64}{289}}-\frac{8}{17}=\frac{15-8}{17} \\
& =\frac{7}{17} .
\end{aligned}
$$

4. If $\theta=0 \Rightarrow \cos 0^{\circ}=1$

$$
\therefore \quad \frac{1-\cos \theta}{1+\cos \theta}=\frac{1-1}{1+1}=\frac{0}{2}=0 .
$$

5. Hint: $\sec 4 \mathrm{~A}=\operatorname{cosec}\left(90^{\circ}-4 \mathrm{~A}\right)$.
6. Hint: $\cos \left(90^{\circ}-\theta\right)=\sin \theta$,

$$
\sin \left(90^{\circ}-\theta\right)=\cos \theta
$$

7. $\frac{(1+\sin \theta)(1-\sin \theta)}{(1+\cos \theta)(1-\cos \theta)}=\frac{1-\sin ^{2} \theta}{1-\cos ^{2} \theta}$
$=\frac{\cos ^{2} \theta}{\sin ^{2} \theta}=\cot ^{2} \theta=\left(\frac{7}{8}\right)^{2}=\frac{49}{64}$.
OR
$\frac{\operatorname{cosec}^{2} \theta+\cot ^{2} \theta}{\operatorname{cosec}^{2} \theta-\sec ^{2} \theta}$

$$
\begin{aligned}
& =\frac{1+\cot ^{2} \theta+\cot ^{2} \theta}{1+\cot ^{2} \theta-\left(1+\tan ^{2} \theta\right)} \\
& =\frac{1+2 \cot ^{2} \theta}{\cot ^{2} \theta-\tan ^{2} \theta} \\
& =\frac{1+2 \times 3}{3-\frac{1}{3}}=\frac{7}{\frac{8}{3}}=\frac{21}{8} .
\end{aligned}
$$

8.

$\tan A=\sqrt{3} \Rightarrow A=60^{\circ}$

$$
\left(\because \tan 60^{\circ}=\sqrt{3}\right)
$$

$\tan B=\frac{1}{\sqrt{3}} \Rightarrow B=30^{\circ}$

$$
\left(\because \tan 30^{\circ}=\frac{1}{\sqrt{3}}\right)
$$

$\therefore \sin A \cos B-\cos A \sin B$

$$
=\sin 60^{\circ} \cdot \cos 30^{\circ}-\cos 60^{\circ} \cdot \sin 30^{\circ}
$$

$$
\begin{aligned}
& =\frac{\sqrt{3}}{2} \times \frac{\sqrt{3}}{2}-\frac{1}{2} \times \frac{1}{2} \\
& =\frac{3}{4}-\frac{1}{4}=\frac{2}{4}=\frac{1}{2} .
\end{aligned}
$$

9. Hint:

$$
\begin{aligned}
\mathrm{LHS} & =\sqrt{\frac{1-\sin \theta}{1+\sin \theta} \times \frac{1-\sin \theta}{1-\sin \theta}} \\
& =\sqrt{(\sec \theta-\tan \theta)^{2}}
\end{aligned}
$$

OR

Hint:

$$
\begin{aligned}
\mathrm{LHS} & =\frac{\cos A}{1-\tan A}+\frac{\sin ^{2} A}{\sin A-\cos A} \\
& =\frac{\cos ^{2} A}{\cos A-\sin A}-\frac{\sin ^{2} A}{\cos A-\sin A} \\
& =\frac{\cos ^{2} A-\sin ^{2} A}{\cos A-\sin A} \\
& =\cos A+\sin A .
\end{aligned}
$$

10. Hint: $1-2 \sin ^{2} \theta=2 \cos ^{2} \theta-1$

$$
=\cos ^{2} \theta-\sin ^{2} \theta
$$

WORKSHEET - 57

1. $\tan \theta=\frac{3}{4}=\frac{\text { Perpendicular }}{\text { Base }}$

$$
\begin{aligned}
\mathrm{BC} & =\sqrt{3^{2}+4^{2}} \\
& =\sqrt{25}=5 \\
\cos \theta & =\frac{\text { Base }}{\text { Hypotenuse }}=\frac{4}{5} \\
\therefore \quad \frac{1-\cos \theta}{1+\cos \theta} & =\frac{1-\frac{4}{5}}{1+\frac{4}{5}}=\frac{1}{9} .
\end{aligned}
$$

2. Hint:

$1+\tan \theta+\sec \theta$

$$
=1+\frac{1}{\cot \theta}+\sec \theta=\frac{1+\cot \theta+\operatorname{cosec} \theta}{\cot \theta}
$$

3. Hint: $\mathrm{A}+\mathrm{B}=90^{\circ} ; \mathrm{A}-\mathrm{B}=30^{\circ}$.
4. $\tan 2 \theta=\cot \left(\theta+9^{\circ}\right)$ $\Rightarrow \tan 2 \theta=\tan \left[90^{\circ}-\left(\theta+9^{\circ}\right)\right]$ $\Rightarrow \quad 2 \theta=90^{\circ}-\theta-9^{\circ} \Rightarrow 3 \theta=81^{\circ}$
$\Rightarrow \quad \theta=27^{\circ}$.
5. $\cot \theta=\frac{\cos \theta}{\sqrt{1-\cos ^{2} \theta}}$.
6. True

Hint: $A^{6}+B^{6}$

$$
=\left(\mathrm{A}^{2}+\mathrm{B}^{2}\right)\left[\left(\mathrm{A}^{2}+\mathrm{B}^{2}\right)^{2}-3 \mathrm{~A}^{2} \mathrm{~B}^{2}\right]
$$

7. Hint:

$$
\text { LHS }=\frac{1-2 \sin \theta \cos \theta+1+2 \sin \theta \cos \theta}{(\sin \theta+\cos \theta)(\sin \theta-\cos \theta)}
$$

8. LHS $=\frac{\cos \mathrm{A}-\sin \mathrm{A}+1}{\cos \mathrm{~A}+\sin \mathrm{A}-1}$

Dividing numerator and denominator by $\sin \mathrm{A}$, we get

$$
\begin{aligned}
& =\frac{\cot \mathrm{A}-1+\operatorname{cosec} \mathrm{A}}{\cot \mathrm{~A}+1-\operatorname{cosec} \mathrm{A}} \\
& =\frac{(\cot \mathrm{A}+\operatorname{cosec} \mathrm{A})-\left(\operatorname{cosec}^{2} \mathrm{~A}-\cot ^{2} \mathrm{~A}\right)}{\cot \mathrm{A}+1-\operatorname{cosec} \mathrm{A}} \\
& =\frac{(\operatorname{cosec} \mathrm{A}+\cot \mathrm{A})[1-\operatorname{cosec} \mathrm{A}+\cot \mathrm{A}]}{\cot \mathrm{A}-\operatorname{cosec} \mathrm{A}+1} \\
& =\operatorname{cosec} \mathrm{A}+\cot \mathrm{A}=\text { RHS } .
\end{aligned}
$$

9. Given expression

$$
\begin{aligned}
= & \frac{2 \sin 68^{\circ}}{\cos 22^{\circ}}-\frac{2 \cot 15^{\circ}}{5 \tan 75^{\circ}} \\
& -\frac{3 \tan 45^{\circ} \tan 20^{\circ} \tan 40^{\circ} \tan 50^{\circ} \tan 70^{\circ}}{5} \\
& \frac{2 \sin \left(90^{\circ}-22^{\circ}\right)}{\cos 22^{\circ}}-\frac{2 \cot \left(90^{\circ}-75^{\circ}\right)}{5 \tan 75^{\circ}} \\
& -\frac{3 \times 1 \times \tan \left(90^{\circ}-70^{\circ}\right) \tan \left(90^{\circ}-50^{\circ}\right)}{\tan 50^{\circ} \tan 70^{\circ}}
\end{aligned}
$$

$$
=\frac{2 \cos 22^{\circ}}{\cos 22^{\circ}}-\frac{2 \tan 75^{\circ}}{5 \tan 75^{\circ}}
$$

$$
-\frac{3 \cot 70^{\circ} \cot 50^{\circ} \tan 50^{\circ} \tan 70^{\circ}}{5}
$$

$$
=2-\frac{2}{5}
$$

$$
-\frac{3 \times \frac{1}{\tan 70^{\circ}} \times \frac{1}{\tan 50^{\circ}} \tan 50^{\circ} \tan 70^{\circ}}{5}
$$

$$
=2-\frac{2}{5}-\frac{3}{5}=\frac{10-2-3}{5}=\frac{5}{5}=1
$$

10. Given expression
$=8 \sqrt{3} \operatorname{cosec}^{2} 30^{\circ} \cdot \sin 60^{\circ} \cdot \cos 60^{\circ} \cdot \cos ^{2} 45^{\circ}$. $\sin 45^{\circ} \cdot \tan 30^{\circ} \cdot \operatorname{cosec}^{3} 45^{\circ}$.

$$
\begin{aligned}
& =8 \sqrt{3} \times \frac{1}{\sin ^{2} 30^{\circ}} \cdot \sin \left(90^{\circ}-30^{\circ}\right) . \\
& \cos \left(90^{\circ}-30^{\circ}\right) \cos ^{2}\left(90^{\circ}-45^{\circ}\right) \cdot \sin 45^{\circ} . \\
& \\
& \frac{\sin 30^{\circ}}{\cos 30^{\circ}} \frac{1}{\sin ^{3} 45^{\circ}}
\end{aligned}
$$

$$
=8 \sqrt{3} \times \frac{1}{\sin ^{2} 30^{\circ}} \times \cos 30^{\circ} \cdot \sin 30^{\circ} \cdot \sin ^{2} 45^{\circ} .
$$

$$
\sin 45^{\circ} \cdot \frac{\sin 30^{\circ}}{\cos 30^{\circ}} \times \frac{1}{\sin ^{3} 45^{\circ}}
$$

$$
=8 \sqrt{3} \times\left(\frac{\sin 30^{\circ} \cdot \sin 30^{\circ}}{\sin ^{2} 30^{\circ}}\right) \times \frac{\cos 30^{\circ}}{\cos 30^{\circ}}
$$

$$
\times \frac{\sin ^{2} 45^{\circ} \sin 45^{\circ}}{\sin ^{3} 45^{\circ}}
$$

$$
=8 \sqrt{3} \times 1 \times 1 \times 1=8 \sqrt{3}
$$

OR
Hint: $\sec ^{2} \theta=x^{2}+\frac{1}{16 x^{2}}+\frac{1}{2}$
$\therefore \sec ^{2} \theta-1=x^{2}+\frac{1}{16 x^{2}}-\frac{1}{2}$
$\therefore \quad \tan ^{2} \theta=\left(x-\frac{1}{4 x}\right)^{2}$
$\Rightarrow \quad \tan \theta= \pm\left(x-\frac{1}{4 x}\right)$.

WORKSHEET-58

1. $\mathrm{As} \sin \mathrm{A}=\frac{3}{4}$,
let $\mathrm{BC}=3 x$ and $\mathrm{CA}=4 x$
$\therefore \mathrm{AB}=\sqrt{(4 x)^{2}-(3 x)^{2}}=\sqrt{7 x}$

Now, $\tan \mathrm{A}=\frac{\mathrm{BC}}{\mathrm{AB}}=\frac{3 x}{\sqrt{7} x}=\frac{3}{\sqrt{7}}$.
2. $\frac{2 \tan 30^{\circ}}{1+\tan ^{2} 30^{\circ}}=\frac{2 \times \frac{1}{\sqrt{3}}}{1+\left(\frac{1}{\sqrt{3}}\right)^{2}}=\frac{\frac{2}{\sqrt{3}}}{\frac{4}{3}}=\frac{\sqrt{3}}{2}$.
3. Hint: $\tan x=\frac{15}{8}$
$\Rightarrow \sin x=\frac{8}{17}, \cos x=\frac{8}{17}$
$\therefore \sin ^{2} x-\cos ^{2} x=\frac{225}{289}-\frac{64}{289}=\frac{161}{289}$.
4. $\frac{\sin 30^{\circ}+\tan 45^{\circ}-\operatorname{cosec} 60^{\circ}}{\sec 30^{\circ}+\cos 60^{\circ}+\cot 45^{\circ}}$

$$
\begin{aligned}
& =\frac{\frac{1}{2}+1-\frac{2}{\sqrt{3}}}{\frac{2}{\sqrt{3}}+\frac{1}{2}+1}=\frac{\sqrt{3}+2 \sqrt{3}-4}{4+\sqrt{3}+2 \sqrt{3}} \\
& =\frac{3 \sqrt{3}-4}{3 \sqrt{3}+4} \times \frac{3 \sqrt{3}-4}{3 \sqrt{3}-4} \\
& =\frac{27+16-24 \sqrt{3}}{27-16}=\frac{43-24 \sqrt{3}}{11} .
\end{aligned}
$$

5. $\because \mathrm{A}+\mathrm{B}+\mathrm{C}=180^{\circ}$
$\therefore \quad$ LHS $=\cot \frac{\mathrm{C}+\mathrm{A}}{2}=\cot \frac{180^{\circ}-\mathrm{B}}{2}$

$$
=\cot \left(90^{\circ}-\frac{B}{2}\right)=\tan \frac{B}{2}
$$

= RHS.
6. Yes.

Hint: Both sides $=\frac{7}{25}$.
7. $\mathrm{LHS}=(\operatorname{cosec} \mathrm{A}-\sin \mathrm{A})(\sec \mathrm{A}-\cos \mathrm{A})$

$$
\begin{align*}
& =\left(\frac{1}{\sin \mathrm{~A}}-\sin \mathrm{A}\right)\left(\frac{1}{\cos \mathrm{~A}}-\cos \mathrm{A}\right) \\
& =\frac{1-\sin ^{2} \mathrm{~A}}{\sin \mathrm{~A}} \times \frac{1-\cos ^{2} \mathrm{~A}}{\cos \mathrm{~A}} \\
& =\frac{\cos ^{2} \mathrm{~A} \times \sin ^{2} \mathrm{~A}}{\sin \mathrm{~A} \cos \mathrm{~A}} \\
& =\sin \mathrm{A} \cos \mathrm{~A} \tag{i}
\end{align*}
$$

RHS $=\frac{1}{\tan A+\cot A}=\frac{1}{\frac{\sin A}{\cos A}+\frac{\cos A}{\sin A}}$

$$
\begin{align*}
& =\frac{\sin A \cos A}{\sin ^{2} A+\cos ^{2} A} \\
& =\sin A \cos A \tag{ii}
\end{align*}
$$

$$
\left(\because \sin ^{2} A+\cos ^{2} A=1\right)
$$

From equations (i) and (ii), we obtain LHS $=$ RHS.
8. $7 \sin ^{2} \theta+3\left(1-\sin ^{2} \theta\right)=4$

Let $\sin \theta=x$
$\therefore \quad 7 x^{2}+3-3 x^{2}=4$
$\Rightarrow 4 x^{2}=1 \Rightarrow x^{2}=\frac{1}{4} \Rightarrow x= \pm \frac{1}{2}$
$\therefore \sin \theta=\frac{1}{2}$ or $\sin \theta=\frac{-1}{2}$
$\sin \theta=-\frac{1}{2}$ is not possible as θ is acute.
$\Rightarrow \operatorname{cosec} \theta=2 \quad \therefore \cos \theta=\frac{\sqrt{3}}{2}$
$\therefore \sec \theta+\operatorname{cosec} \theta=\frac{2}{\sqrt{3}}+2$. Hence proved
9. $\mathrm{LHS}=(\sec \theta+\tan \theta)^{2}$

$$
\begin{aligned}
& =(\sec \theta+\tan \theta)(\sec \theta+\tan \theta) \\
& =(\sec \theta+\tan \theta)(\sec \theta+\tan \theta) \\
& \quad \times \frac{(\sec \theta-\tan \theta)}{(\sec \theta-\tan \theta)}
\end{aligned}
$$

$$
=\frac{(\sec \theta+\tan \theta)\left(\sec ^{2} \theta-\tan ^{2} \theta\right)}{(\sec \theta-\tan \theta)}
$$

$$
=\frac{(\sec \theta+\tan \theta) \cdot 1}{\sec \theta-\tan \theta}=\frac{\frac{1}{\cos \theta}+\frac{\sin \theta}{\cos \theta}}{\frac{1}{\cos \theta}-\frac{\sin \theta}{\cos \theta}}
$$

$$
=\frac{1+\sin \theta}{1-\sin \theta}=\frac{\sin \theta\left(\frac{1}{\sin \theta}+1\right)}{\sin \theta\left(\frac{1}{\sin \theta}-1\right)}
$$

$$
=\frac{\operatorname{cosec} \theta-1}{\operatorname{cosec} \theta+1}=\text { RHS }
$$

10. LHS $=m^{2}-n^{2}=(\tan \theta+\sin \theta)^{2}$
$-(\tan \theta-\sin \theta)^{2}=4 \sin \theta \tan \theta$
RHS $=4 \sqrt{m n}=4 \sqrt{\frac{\sin ^{2} \theta}{\cos ^{2} \theta}-\sin ^{2} \theta}$

$$
\begin{align*}
& =4 \sin \theta \sqrt{\sec ^{2} \theta-1} \\
& =4 \sin \theta \tan \theta \tag{ii}
\end{align*}
$$

From (i) and (ii), LHS = RHS.

WORKSHEET-59

1. Required value $=25\left(\frac{64}{100}+2 \times \frac{36}{100}-\frac{8}{6}\right)$

$$
\begin{aligned}
& =25 \times \frac{1}{300}(192+216-400) \\
& =\frac{1}{12} \times 8=\frac{2}{3}
\end{aligned}
$$

2. $\sin \theta=\sqrt{1-\cos ^{2} \theta}=\sqrt{1-0.36}=0.8$

And $\tan \theta=\frac{\sin \theta}{\cos \theta}=\frac{0.8}{0.6}=\frac{4}{3}$
Now, $5 \sin \theta-3 \tan \theta=5 \times 0.8-3 \times \frac{4}{3}=0$
3. Hint: Divide numerator and denominator by $\sin \mathrm{A}$.

$$
\frac{1+\cot A}{1-\cot A}=\frac{1+\frac{3}{4}}{1-\frac{3}{4}}
$$

4. $\sec A=\frac{2}{\sqrt{3}} \Rightarrow \sec A=\sec 30^{\circ} \Rightarrow A=30^{\circ}$
$\Rightarrow A+B=90^{\circ} \Rightarrow B=90^{\circ}-30^{\circ}=60^{\circ}$
Now, $\operatorname{cosec} B=\operatorname{cosec} 60^{\circ}=\frac{2}{\sqrt{3}}$
5. Given expression

$$
\begin{aligned}
& =\frac{(\sqrt{3})^{2}+4\left(\frac{1}{\sqrt{2}}\right)^{2}+3\left(\frac{2}{\sqrt{3}}\right)^{2}+5 \times 0}{2+2-(\sqrt{3})^{2}} \\
& =\frac{3+2+4}{4-3}=9
\end{aligned}
$$

6. False

Hint: $\angle \mathrm{A}=30^{\circ}, \angle \mathrm{B}=60^{\circ}$.
7. $\sqrt{\frac{\sec \theta-\operatorname{cosec} \theta}{\sec \theta+\operatorname{cosec} \theta}}$

$$
=\sqrt{\frac{\frac{1}{\cos \theta}-\frac{1}{\sin \theta}}{\cos \theta}+\frac{1}{\sin \theta}}=\sqrt{\frac{\sin \theta-\cos \theta}{\sin \theta+\cos \theta}}
$$

$$
=\sqrt{\frac{(\sin \theta-\cos \theta) \times \frac{1}{\sin \theta}}{(\sin \theta+\cos \theta) \times \frac{1}{\sin \theta}}}=\sqrt{\frac{1-\cot \theta}{1+\cot \theta}}
$$

$$
=\sqrt{\frac{1-\frac{3}{4}}{1+\frac{3}{4}}}=\sqrt{\frac{1}{7}}
$$

Hence proved.
8. $\frac{\cos \theta-\sin \theta}{\cos \theta+\sin \theta}=\frac{\cot \theta-1}{\cot \theta+1}$.
(Dividing numerator and denominator by $\sin \theta)$

$$
=\frac{\frac{p}{q}-1}{\frac{p}{q}+1}=\frac{p-q}{p+q} .
$$

9. Given expression

$$
\begin{aligned}
& =\left(\frac{\sin 35^{\circ}}{\cos 55^{\circ}}\right)^{2}+\left(\frac{\cos 55^{\circ}}{\sin 35^{\circ}}\right)^{2}-2 \cos 60^{\circ} \\
& =\left\{\frac{\sin 35^{\circ}}{\cos \left(90^{\circ}-35^{\circ}\right)}\right\}^{2}+\left\{\frac{\cos 55^{\circ}}{\sin \left(90^{\circ}-55^{\circ}\right)}\right\}^{2} \\
& -2 \cos 60^{\circ} \\
& =\left(\frac{\sin 35^{\circ}}{\sin 35^{\circ}}\right)^{2}+\left(\frac{\cos 55^{\circ}}{\cos 55^{\circ}}\right)^{2}-2 \cos 60^{\circ} \\
& =1+1-2 \cos 60^{\circ} \\
& =2-2 \times \frac{1}{2}=2-1=1
\end{aligned}
$$

OR

Given expression

$$
=\frac{\cos 58^{\circ}}{\sin 32^{\circ}}+\frac{\sin 22^{\circ}}{\cos 68^{\circ}}
$$

$$
-\quad \cos 38^{\circ} \operatorname{cosec} 52^{\circ}
$$

$\overline{\tan 18^{\circ} \tan 35^{\circ} \tan 60^{\circ} \tan 72^{\circ} \tan 55^{\circ}}$

$$
=\frac{\cos 58^{\circ}}{\sin \left(90^{\circ}-58^{\circ}\right)}+\frac{\sin 22^{\circ}}{\cos \left(90^{\circ}-22^{\circ}\right)}
$$

$$
\begin{array}{r}
-\frac{\cos 38^{\circ} \operatorname{cosec}\left(90^{\circ}-38^{\circ}\right)}{\tan 18^{\circ} \tan 35^{\circ} \tan 60^{\circ} \tan \left(90^{\circ}-18^{\circ}\right)} \\
\tan \left(90^{\circ}-35^{\circ}\right)
\end{array}
$$

$$
=\frac{\cos 58^{\circ}}{\cos 58^{\circ}}+\frac{\sin 22^{\circ}}{\sin 22^{\circ}}
$$

$$
-\frac{\cos 38^{\circ} \sec 38^{\circ}}{\tan 18^{\circ} \tan 35^{\circ} \tan 60^{\circ} \cot 18^{\circ} \cot 35^{\circ}}
$$

$$
=2-\frac{\cos 38^{\circ} \times \frac{1}{\cos 38^{\circ}} \times \tan 18^{\circ} \times \tan 35^{\circ}}{\tan 18^{\circ} \tan 35^{\circ} \tan 60^{\circ}}
$$

$$
=2-\frac{1}{\tan 60^{\circ}}
$$

$$
=2-\frac{1}{\sqrt{3}}=\frac{2 \sqrt{3}-1}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}}=\frac{6-\sqrt{3}}{3} .
$$

10. $\tan \mathrm{A}=n \tan \mathrm{~B}$

$$
\begin{aligned}
& \Rightarrow \quad \cot \mathrm{B}=\frac{n}{\tan \mathrm{~A}} \text { and } \sin \mathrm{A}=m \sin \mathrm{~B} \\
& \Rightarrow \quad \sin \mathrm{~B}=\frac{1}{m} \sin \mathrm{~A} \\
& \Rightarrow \operatorname{cosec} \mathrm{~B}=\frac{m}{\sin \mathrm{~A}} \\
& \therefore \quad \operatorname{cosec}^{2} \mathrm{~B}-\cot ^{2} \mathrm{~B}=1 \\
& \Rightarrow \quad \frac{m^{2}}{\sin ^{2} \mathrm{~A}}-\frac{n^{2}}{\tan ^{2} \mathrm{~A}}=1 \\
& \Rightarrow \quad \frac{m^{2}-n^{2} \cos ^{2} \mathrm{~A}}{\sin ^{2} \mathrm{~A}}=1 \\
& \Rightarrow \quad m^{2}-1=\left(n^{2}-1\right) \cos ^{2} \mathrm{~A} \\
& \Rightarrow \quad \frac{m^{2}-1}{n^{2}-1}=\cos ^{2} \mathrm{~A} .
\end{aligned}
$$

Hence proved

OR

Consider an equilateral triangle PQR in which PS \perp QR. Since PS \perp QR so PS bisects $\angle \mathrm{P}$ as well as base QR . We observe that $\triangle \mathrm{PQS}$ is a
 right triangle, right-angled at S with $\angle \mathrm{QPS}=30^{\circ}$ and $\angle \mathrm{PQS}=60^{\circ}$.
For finding the trigonometric ratios, we need to know the length of the sides of the triangle. So, let us suppose $\mathrm{PQ}=x$
Then, $\mathrm{QS}=\frac{1}{2} \mathrm{QR}=\frac{x}{2}$
and $(\mathrm{PS})^{2}=(\mathrm{PQ})^{2}-(\mathrm{QS})^{2}$

$$
=x^{2}-\frac{x^{2}}{4}=\frac{3 x^{2}}{4}
$$

$\therefore \quad$ PS $=\frac{\sqrt{3} x}{2}$
(i) $\cos 60^{\circ}=\frac{\mathrm{QS}}{\mathrm{PQ}}=\frac{\frac{x}{2}}{x}=\frac{1}{2}$
(ii) $\sin 60^{\circ}=\frac{\mathrm{PS}}{\mathrm{PQ}}=\frac{\frac{\sqrt{3} x}{2}}{x}=\frac{\sqrt{3}}{2}$
(iii) $\tan 30^{\circ}=\frac{\mathrm{QS}}{\mathrm{PS}}=\frac{\frac{x}{2}}{\frac{\sqrt{3} x}{2}}=\frac{1}{\sqrt{3}}$.

WORKSHEET - 60

1. $b^{2} x^{2}+a^{2} y^{2}=b^{2} a^{2} \cos ^{2} \theta+a^{2} b^{2} \sin ^{2} \theta$

$$
=a^{2} b^{2}
$$

2. $\mathrm{A}=90^{\circ}-60^{\circ}=30^{\circ}$
$\therefore \operatorname{cosec} A=\operatorname{cosec} 30^{\circ}=2$.
3. $\tan \theta=\frac{12}{5}$
$\Rightarrow \quad 1+\tan ^{2} \theta=1+\frac{12^{2}}{5^{2}}$
$\Rightarrow \quad \sec \theta=\frac{13}{5}$
Now, $\frac{1+\sin \theta}{1-\sin \theta}=\frac{\frac{1+\sin \theta}{\cos \theta}}{\frac{1-\sin \theta}{\cos \theta}}=\frac{\sec \theta+\tan \theta}{\sec \theta-\tan \theta}$

$$
=\frac{\frac{13}{5}+\frac{12}{5}}{\frac{13}{5}-\frac{12}{5}}=\frac{\frac{25}{5}}{\frac{1}{5}}=25
$$

4. $\left(\frac{\sin 29^{\circ}}{\cos 61^{\circ}}\right)+\left(\frac{\cos 27^{\circ}}{\sin 63^{\circ}}\right)^{2}-4 \cos ^{2} 45^{\circ}$
$=\frac{\sin 29^{\circ}}{\cos \left(90^{\circ}-29^{\circ}\right)}+\left\{\frac{\cos 27^{\circ}}{\sin \left(90^{\circ}-27^{\circ}\right)}\right\}^{2}$
$-4 \times\left(\frac{1}{\sqrt{2}}\right)^{2}$
5. Given expression

$$
\begin{aligned}
& =4\left\{\left(\frac{1}{2}\right)^{4}+\left(\frac{1}{2}\right)^{2}\right\}-3\left\{\left(\frac{1}{\sqrt{2}}\right)^{2}-(1)^{2}\right\} \\
& =4\left(\frac{1}{16}+\frac{1}{4}\right)-3\left(\frac{1}{2}-1\right)-\frac{3}{4} \\
& \left.=\frac{1}{4}+1-\frac{\sqrt{3}}{2}\right)^{2} \\
& =\frac{17}{4}-\frac{9}{4}=\frac{8}{4}=2 . \frac{3}{4}
\end{aligned}
$$

6. $\frac{1}{\tan A}+\frac{\sin A}{1+\cos A}=\frac{\cos A}{\sin A}+\frac{\sin A}{1+\cos A}$

$$
\begin{aligned}
& =\frac{\cos A+\cos ^{2} A+\sin ^{2} A}{\sin A(1+\cos A)} \\
& =\frac{1+\cos A}{\sin A(1+\cos A)}=\operatorname{cosec} A \\
& =2
\end{aligned}
$$

7. $\because \quad \sin \theta=\frac{3}{4} \quad \therefore \operatorname{cosec} \theta=\frac{4}{3}$
$\because \quad \cos \theta=\sqrt{1-\sin ^{2} \theta}=\sqrt{1-\frac{9}{16}}=\frac{\sqrt{7}}{4}$
$\therefore \quad \sec \theta=\frac{4}{\sqrt{7}}$ and $\cot \theta=\frac{\sqrt{7}}{3}$
Now, LHS

$$
\begin{aligned}
& =\sqrt{\frac{\operatorname{cosec}^{2} \theta-\cot ^{2} \theta}{\sec ^{2} \theta-1}}=\sqrt{\frac{\frac{16}{9}-\frac{7}{9}}{\frac{16}{7}-1}}=\sqrt{\frac{\frac{9}{9}}{\frac{9}{7}}} \\
& =\sqrt{\frac{7}{9}}=\frac{\sqrt{7}}{3}=\text { RHS. } \quad \text { Hence proved. }
\end{aligned}
$$

8. Hint: $\mathrm{LHS}=\frac{1}{\frac{1}{\sin A}-\frac{\cos A}{\sin A}}-\frac{1}{\sin A}$

$$
\begin{aligned}
& =\frac{\sin A}{1-\cos A}-\frac{1}{\sin A} \\
& =\frac{\sin ^{2} A-1+\cos A}{\sin A(1-\cos A)}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1-\cos ^{2} A-1+\cos A}{\sin A(1-\cos A)} \\
& =\frac{\cos A(1-\cos A)}{\sin A(1-\cos A)}=\cot A . \\
& \quad \text { OR }
\end{aligned}
$$

Using $a^{3}+b^{3}=\left(a^{2}+b^{2}-a b\right)(a+b)$, we get
$\frac{\sin ^{3} \theta+\cos ^{3} \theta}{\sin \theta+\cos \theta}+\sin \theta \cdot \cos \theta$
$=\frac{(\sin \theta+\cos \theta)\left(\sin ^{2} \theta+\cos ^{2} \theta-\sin \theta \cdot \cos \theta\right)}{\sin \theta+\cos \theta}$
$+\sin \theta \cdot \cos \theta$
$=1-\sin \theta \cdot \cos \theta+\sin \theta \cdot \cos \theta=1$.
9. $\frac{(2+2 \sin \theta)(1-\sin \theta)}{(1+\cos \theta)(2-2 \cos \theta)}$
$=\frac{2(1+\sin \theta)(1-\sin \theta)}{2(1+\cos \theta)(1-\cos \theta)}$
$=\frac{1-\sin ^{2} \theta}{1-\cos ^{2} \theta}=\frac{\cos ^{2} \theta}{\sin ^{2} \theta}=\cot ^{2} \theta$
$=\left(\frac{15}{8}\right)^{2}=\frac{225}{64}$.
10. Hint: $p^{2}-1=\sec ^{2} \theta+\tan ^{2} \theta+2 \sec \theta \tan \theta-1$ $=1+\tan ^{2} \theta+\tan ^{2} \theta+2 \sec \theta \tan \theta-1$
$=2 \tan \theta(\tan \theta+\sec \theta)$
Similarly $p^{2}+1=2 \sec \theta(\tan \theta+\sec \theta)$.

WORKSHEET-61

$$
\begin{aligned}
& \text { 1. Hint: } \begin{aligned}
x+y & =2 \cot \mathrm{~A} \\
x-y & =2 \cos \mathrm{~A} \\
\therefore \quad\left(\frac{x-y}{x+y}\right)^{2} & =\sin ^{2} \mathrm{~A}
\end{aligned},=\text { and }
\end{aligned}
$$

and $\left(\frac{x-y}{2}\right)^{2}=\cos ^{2} \mathrm{~A}$
$\therefore \quad \sin ^{2} \mathrm{~A}+\cos ^{2} \mathrm{~A}=1$.
2. 5

Hint: $(x+1)^{2}=x^{2}+5^{2}$

3. $\tan \mathrm{A}=\frac{1}{\sqrt{3}}=\tan 30^{\circ}$
$\Rightarrow \quad \angle \mathrm{A}=30^{\circ}$
$\therefore \quad \angle \mathrm{C}=180^{\circ}-\angle \mathrm{A}-\angle \mathrm{B}=180^{\circ}-120^{\circ}$

$$
=60^{\circ}
$$

Now, $\sin \mathrm{A} \cos \mathrm{C}+\cos \mathrm{A} \sin \mathrm{C}$
$=\sin 30^{\circ} \cos 60^{\circ}+\cos 30^{\circ} \sin 60^{\circ}$
$=\frac{1}{2} \times \frac{1}{2}+\frac{\sqrt{3}}{2} \times \frac{\sqrt{3}}{2}=1$.
4. $\cos \alpha=\frac{1}{2} \Rightarrow \cos \alpha=\cos 60^{\circ}$
$\Rightarrow \quad \alpha=60^{\circ}$ $\tan \beta=\frac{1}{\sqrt{3}} \Rightarrow \tan \beta=\tan 30^{\circ}$
$\Rightarrow \quad \beta=30^{\circ}$.
Now, $\sin (\alpha+\beta)=\sin \left(60^{\circ}+30^{\circ}\right)=\sin 90^{\circ}=1$.
5. $\tan 1^{\circ} \tan 2^{\circ} \ldots . \tan 43^{\circ} \tan 44^{\circ} \tan 45^{\circ}$ $\tan 46^{\circ} \tan 47^{\circ} \ldots . . \tan 88^{\circ} \tan 89^{\circ}$
$=\left(\tan 1^{\circ} \tan 89^{\circ}\right)\left(\tan 2^{\circ} \tan 88^{\circ}\right) \ldots\left(\tan 43^{\circ}\right.$ $\left.\tan 47^{\circ}\right)\left(\tan 44^{\circ} \tan 46^{\circ}\right) \tan 45^{\circ}$
$=\left(\tan 1^{\circ} \cot 1^{\circ}\right)\left(\tan 2^{\circ} \cot 2^{\circ}\right) \ldots . .\left(\tan 43^{\circ}\right.$
$\left.\cot 43^{\circ}\right)\left(\tan 44^{\circ} \cot 44^{\circ}\right) \tan 45^{\circ}$
$=(1) \times(1) \times \ldots . \times(1) \times(1) \times \tan 45^{\circ}$
$=(1 \times 1 \times \ldots . \times 1 \times 1) \times \tan 45^{\circ}$
$=1 \times 1=1$.
6. Given expression
$=\frac{\tan 50^{\circ}+\sec 50^{\circ}}{\cot 40^{\circ}+\operatorname{cosec} 40^{\circ}}+\cos 40^{\circ} \operatorname{cosec} 50^{\circ}$
$=\frac{\tan 50^{\circ}+\sec 50^{\circ}}{\cot \left(90^{\circ}-50^{\circ}\right)+\operatorname{cosec}\left(90^{\circ}-50^{\circ}\right)}+$ $\cos 40^{\circ} \operatorname{cosec}\left(90^{\circ}-40^{\circ}\right)$
$=\frac{\tan 50^{\circ}+\sec 50^{\circ}}{\tan 50^{\circ}+\sec 50^{\circ}}+\cos 40^{\circ} \cdot \frac{1}{\cos 40^{\circ}}$
$=1+1=2$.
7. LHS $=\tan (\mathrm{A}-\mathrm{B})=\tan \left(60^{\circ}-30^{\circ}\right)=\tan 30^{\circ}$
$=\frac{1}{\sqrt{3}}$.
RHS $=\frac{\tan A-\tan B}{1+\tan A \cdot \tan B}=\frac{\tan 60^{\circ}-\tan 30^{\circ}}{1+\tan 60^{\circ} \cdot \tan 30^{\circ}}$

$$
\begin{aligned}
& =\frac{\sqrt{3}-\frac{1}{\sqrt{3}}}{1+\sqrt{3} \cdot \frac{1}{\sqrt{3}}}=\frac{\frac{3-1}{\sqrt{3}}}{1+1}=\frac{\frac{2}{\sqrt{3}}}{2} \\
& =\frac{1}{\sqrt{3}}=\text { LHS. } \quad \text { Hence verified. }
\end{aligned}
$$

8. RHS $=\frac{\sin ^{6} \theta}{\cos ^{6} \theta}+\frac{3 \sin ^{2} \theta}{\cos ^{2} \theta} \cdot \frac{1}{\cos ^{2}}+1$

$$
=\frac{\sin ^{6} \theta+\cos ^{6} \theta+3 \sin ^{2} \theta \cos ^{2} \theta}{\cos ^{6} \theta}
$$

$$
=\frac{\left(\sin ^{2} \theta+\cos ^{2} \theta\right)^{3}}{\cos ^{6} \theta}
$$

$$
=\sec ^{6} \theta=\text { LHS. } \quad\left[\because \sin ^{2} \theta+\cos ^{2} \theta=1\right]
$$

OR

Hint: Numerator of

$$
\text { LHS }=\tan \theta+\sec \theta-\left(\sec ^{2} \theta-\tan ^{2} \theta\right)
$$

$$
=(\tan \theta+\sec \theta)-(\tan \theta+\sec \theta)
$$

$$
(\sec \theta-\tan \theta)
$$

$=(\tan \theta+\sec \theta)(1-\sec \theta+\tan \theta)$.
9. $\cos \theta+\sin \theta=\sqrt{2} \cos \theta$

Squaring both sides, we get
$\cos ^{2} \theta+2 \cos \theta \sin \theta+\sin ^{2} \theta=2 \cos ^{2} \theta$
$\Rightarrow 2 \cos ^{2} \theta-\cos ^{2} \theta-2 \cos \theta \sin \theta=\sin ^{2} \theta$
$\Rightarrow \cos ^{2} \theta-2 \cos \theta \sin \theta=\sin ^{2} \theta$
Adding $\sin ^{2} \theta$ to both sides, we have
$\sin ^{2} \theta+\cos ^{2} \theta-2 \cos \theta \sin \theta=\sin ^{2} \theta$
$+\sin ^{2} \theta$
$\Rightarrow(\cos \theta-\sin \theta)^{2}=2 \sin ^{2} \theta$
$\Rightarrow \cos \theta-\sin \theta=\sqrt{2} \sin \theta$ Hence proved.
10. Hint: $l \tan \theta+m \sec \theta=n$
$\ldots(i) \times l^{\prime}$
$l^{\prime} \tan \theta-m^{\prime} \sec \theta=n^{\prime}$
$\Rightarrow \quad l l^{\prime} \tan \theta+m l^{\prime} \sec \theta=n l^{\prime}$
$l^{\prime} l \tan \theta-m^{\prime} l \sec \theta=n^{\prime} l$

$$
-\frac{+}{-\quad-}
$$

$\Rightarrow \quad \sec \theta=\frac{n l^{\prime}-n^{\prime} l}{m^{\prime} l+m l^{\prime}}$
Similarly, $\tan \theta=\frac{n m^{\prime}+m n^{\prime}}{l m^{\prime}+m l^{\prime}}$.

WORKSHEET - 62

1. Given expression

$$
\begin{aligned}
= & \frac{\cos ^{2}\left(90^{\circ}-70^{\circ}\right)+\cos ^{2} 70^{\circ}}{\sec ^{2}\left(90^{\circ}-40^{\circ}\right)-\cot ^{2} 40^{\circ}} \\
& \quad+2\left\{\operatorname{cosec}^{2} 58^{\circ}-\cot 58^{\circ} \tan \left(90^{\circ}-58^{\circ}\right)\right\} \\
= & \frac{\sin ^{2} 70^{\circ}+\cos ^{2} 70^{\circ}}{\operatorname{cosec}^{2} 40^{\circ}-\cot ^{2} 40^{\circ}}
\end{aligned}
$$

$$
+2\left(\operatorname{cosec}^{2} 58^{\circ}-\cot ^{2} 58^{\circ}\right)
$$

$$
=\frac{1}{1}+2(1)=1+2=3 .
$$

2. $\sec 5 \mathrm{~A}=\operatorname{cosec}\left(\mathrm{A}-36^{\circ}\right)$
$\Rightarrow \sec 5 \mathrm{~A}=\sec \left\{90^{\circ}-\left(\mathrm{A}-36^{\circ}\right)\right\}$
$\Rightarrow \quad 5 \mathrm{~A}=-\mathrm{A}+126^{\circ} \Rightarrow \mathrm{A}=21^{\circ}$.
3. Given expression

$$
\begin{aligned}
= & \sin ^{2} 5^{\circ}+\sin ^{2} 10^{\circ} \ldots+\sin ^{2} 40^{\circ}+\sin ^{2} 45^{\circ} \\
& +\sin ^{2} 50^{\circ}+\ldots+\sin ^{2} 80^{\circ}+\sin ^{2} 85^{\circ}+\sin ^{2} 90^{\circ} \\
= & \cos ^{2} 85^{\circ}+\cos ^{2} 80^{\circ}+\ldots .+\cos ^{2} 50^{\circ}+\left(\frac{1}{\sqrt{2}}\right)^{2}+ \\
& \sin ^{2} 50^{\circ}+\ldots .+\sin ^{2} 80^{\circ}+\sin ^{2} 85^{\circ}+(1)^{2} \\
= & \left(\cos ^{2} 85^{\circ}+\sin ^{2} 85^{\circ}\right)+\left(\cos ^{2} 80^{\circ}+\sin ^{2} 80^{\circ}\right) \\
& +\ldots .+\left(\cos ^{2} 50^{\circ}+\sin ^{2} 50^{\circ}\right)+\frac{1}{2}+1 \\
= & (1+1+\ldots .8 \text { terms })+\frac{1}{2}+1 \\
= & 8+\frac{1}{2}+1=9 \frac{1}{2} .
\end{aligned}
$$

4. $\tan 3 x=\frac{1}{\sqrt{2}} \cdot \frac{1}{\sqrt{2}}+\frac{1}{2}=\frac{1}{2}+\frac{1}{2}=1$
$\Rightarrow \tan 3 x=\tan 45^{\circ} \Rightarrow x=\frac{45^{\circ}}{3}=15^{\circ}$.
5. $\operatorname{cosec} A=\sqrt{2} \Rightarrow \sin A=\frac{1}{\sqrt{2}}$
$\cos \mathrm{A}=\sqrt{1-\sin ^{2} \mathrm{~A}}=\sqrt{1-\frac{1}{2}}=\frac{1}{\sqrt{2}}$ $\tan \mathrm{A}=1, \cot \mathrm{~A}=1$
Now, $\frac{2 \sin ^{2} \mathrm{~A}+3 \cot ^{2} \mathrm{~A}}{4\left(\tan ^{2} \mathrm{~A}-\cos ^{2} \mathrm{~A}\right)}=\frac{2 \times \frac{1}{2}+3 \times 1}{4\left(1-\frac{1}{2}\right)}$

$$
=\frac{4}{2}=2
$$

6. True

Hint:

$$
\left.\begin{array}{rl}
a \cos \theta+b \sin \theta & =4 \quad \ldots(i) \times \sin \theta \\
a \sin \theta-b \cos \theta & =3 \quad \ldots(i i) \times \cos \theta \\
\Rightarrow \quad a \cos \theta \sin \theta+b \sin ^{2} \theta & =4 \sin \theta \\
-a \sin \theta \cos \theta-b \cos ^{2} \theta & =\underline{3} \cos \theta \\
\hline b & =4 \sin \theta-3 \cos \theta \\
a & =4 \cos \theta+3 \sin \theta
\end{array} \begin{array}{rl}
\text { Similarly, } \\
\therefore a^{2}+b^{2}=16 \sin ^{2} \theta+9 \cos ^{2} \theta-12 \sin \theta \cos \theta \\
+16 \cos ^{2} \theta+9 \sin \theta \\
+12 \sin \theta \cos \theta
\end{array}\right] .
$$

7. $\left(a^{2}-b^{2}\right) \sin \theta+2 a b \cdot \cos \theta=a^{2}+b^{2}$

Divide by $\cos \theta$

$$
\begin{aligned}
& \left(a^{2}-b^{2}\right) \tan \theta+2 a b=\frac{a^{2}+b^{2}}{\cos \theta} \\
& \Rightarrow\left(a^{2}-b^{2}\right) \tan \theta+2 a b=\left(a^{2}+b^{2}\right) \cdot \sec \theta \\
& \\
& \quad=\left(a^{2}+b^{2}\right) \cdot \sqrt{1+\tan ^{2} \theta}
\end{aligned}
$$

Squaring both sides:

$$
\begin{aligned}
& \left(a^{2}-b^{2}\right)^{2} \tan ^{2} \theta+4 a^{2} b^{2}+4 a b\left(a^{2}-b^{2}\right) \tan \theta \\
& =\left(a^{2}+b^{2}\right)^{2}\left(1+\tan ^{2} \theta\right) \\
& =\left(a^{2}+b^{2}\right)^{2}+\left(a^{2}+b^{2}\right)^{2} \tan ^{2} \theta \\
& {\left[\left(a^{2}-b^{2}\right)^{2}-\left(a^{2}+b^{2}\right)^{2}\right] \tan ^{2} \theta+4 a^{2} b^{2}+4 a b} \\
& \left(a^{2}-b^{2}\right) \tan \theta-\left(a^{2}+b^{2}\right)^{2}=0 \\
& \Rightarrow-4 a^{2} b^{2} \tan ^{2} \theta+4 a b\left(a^{2}-b^{2}\right) \tan \theta-a^{4}-b^{4} \\
& +2 a^{2} b^{2}=0 \\
& \Rightarrow-4 a^{2} b^{2} \tan ^{2} \theta+4 a b\left(a^{2}-b^{2}\right) \tan \theta \\
& -\left(a^{2}-b^{2}\right)^{2}=0 \\
& \Rightarrow 4 a^{2} b^{2} \tan ^{2} \theta-4 a b\left(a^{2}-b^{2}\right) \tan \theta \\
& +\left(a^{2}-b^{2}\right)^{2}=0 \\
& \Rightarrow\left[2 a b \tan \theta-\left(a^{2}-b^{2}\right)\right]^{2}=0 \\
& \Rightarrow \quad 2 a b \tan \theta=a^{2}-b^{2} \\
& \Rightarrow \quad \tan \theta=\frac{a^{2}-b^{2}}{2 a b} \text {. }
\end{aligned}
$$

8. Hint: Use $\left(a^{2}+b^{2}\right)^{3}=a^{6}+b^{6}+3 a^{2} b^{2}\left(a^{2}+b^{2}\right)$.
9. LHS

$$
=\frac{(1+\cot A+\tan A)(\sin A-\cos A)}{\sec ^{3} A-\operatorname{cosec}^{3} A}
$$

$$
=\frac{\left(1+\frac{\cos A}{\sin A}+\frac{\sin A}{\cos A}\right)(\sin A-\cos A)}{\frac{1}{\cos ^{3} A}-\frac{1}{\sin ^{3} A}}
$$

$\left(\sin A \cos A+\cos ^{2} A+\sin ^{2} A\right)(\sin A-\cos A)$

$$
=\frac{\sin A \cos A}{\frac{(\sin A-\cos A)\left(\sin ^{2} A+\cos ^{2} A+\sin A \cos A\right)}{\sin ^{3} A \cos ^{3} A}}
$$

$=\sin ^{2} \mathrm{~A} \cdot \cos ^{2} \mathrm{~A}=$ RHS. Hence proved.
10. $m=\operatorname{cosec} \theta-\sin \theta=\frac{1}{\sin \theta}-\sin \theta$

$$
=\frac{1-\sin ^{2} \theta}{\sin \theta}=\frac{\cos ^{2} \theta}{\sin \theta}
$$

$$
n=\sec \theta-\cos \theta=\frac{1}{\cos \theta}-\cos \theta
$$

$$
=\frac{1-\cos ^{2} \theta}{\cos \theta}=\frac{\sin ^{2} \theta}{\cos \theta}
$$

Now, LHS $=\left(m^{2} n\right)^{\frac{2}{3}}+\left(m n^{2}\right)^{\frac{2}{3}}$

$$
\begin{aligned}
& =\left(\frac{\cos ^{4} \theta}{\sin ^{2} \theta} \times \frac{\sin ^{2} \theta}{\cos \theta}\right)^{\frac{2}{3}}+\left(\frac{\cos ^{2} \theta}{\sin \theta} \times \frac{\sin ^{4} \theta}{\cos ^{2} \theta}\right)^{\frac{2}{3}} \\
& =\left(\cos ^{3} \theta\right)^{\frac{2}{3}}+\left(\sin ^{3} \theta\right)^{\frac{2}{3}} \\
& =\cos ^{2} \theta+\sin ^{2} \theta=1=\text { RHS } .
\end{aligned}
$$

OR

LHS

$=(1+\cot A-\operatorname{cosec} A)(1+\tan A+\sec A)$
$=\left(1+\frac{\cos A}{\sin A}-\frac{1}{\sin A}\right)\left(1+\frac{\sin A}{\cos A}+\frac{1}{\cos A}\right)$
$=\frac{\sin A+\cos A-1}{\sin A} \times \frac{\cos A+\sin A+1}{\cos A}$
$=\frac{(\sin A+\cos A)^{2}-1^{2}}{\sin A \cos A}$
$=\frac{\sin ^{2} A+2 \sin A \cos A+\cos ^{2} A-1}{\sin A \cos A}$
$=\frac{2 \sin \mathrm{~A} \cos \mathrm{~A}}{\sin \mathrm{~A} \cos \mathrm{~A}}=2$
$=$ RHS.

Hence proved.

WORKSHEET-63

1. Given expression
$=\sin 25^{\circ} \cos \left(90^{\circ}-25^{\circ}\right)+\cos 25^{\circ}$ $\sin \left(90^{\circ}-25^{\circ}\right)$
$=\sin ^{2} 25^{\circ}+\cos ^{2} 25^{\circ}=1$.
2. $\frac{2 \sin \theta-\cos \theta}{2 \sin \theta+\cos \theta}=\frac{\frac{2 \sin \theta}{\cos \theta}-\frac{\cos \theta}{\cos \theta}}{\frac{2 \sin \theta}{\cos \theta}+\frac{\cos \theta}{\cos \theta}}$

$$
=\frac{2 \tan \theta-1}{2 \tan \theta+1}=\frac{2 \times \frac{4}{3}-1}{2 \times \frac{4}{3}+1}=\frac{5}{11} .
$$

3. $\frac{\cos 45^{\circ}}{\sec 30^{\circ}+\operatorname{cosec} 30^{\circ}}=\frac{\frac{1}{\sqrt{2}}}{\frac{2}{\sqrt{3}}+2}$

$$
=\frac{\frac{1}{\sqrt{2}}}{\frac{2(1+\sqrt{3})}{\sqrt{3}}}=\frac{1}{\sqrt{2}} \times \frac{\sqrt{3}}{2(1+\sqrt{3})}
$$

$$
=\frac{\sqrt{3} \times(\sqrt{3}-1)}{2 \sqrt{2}(\sqrt{3}+1)(\sqrt{3}-1)}=\frac{3-\sqrt{3}}{4 \sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}}
$$

$$
=\frac{3 \sqrt{2}-\sqrt{6}}{8}
$$

4. False, because $\cos ^{2} 23^{\circ}-\sin ^{2} 67^{\circ}=0,0$ is not a positive value.
5. LHS $=\frac{\cos \mathrm{A}}{1+\sin \mathrm{A}}+\frac{1+\sin \mathrm{A}}{\cos \mathrm{A}}$
$=\frac{\cos ^{2} \mathrm{~A}+(1+\sin \mathrm{A})^{2}}{(1+\sin \mathrm{A}) \cos \mathrm{A}}$
$=\frac{\cos ^{2} \mathrm{~A}+1+\sin ^{2} \mathrm{~A}+2 \sin \mathrm{~A}}{(1+\sin \mathrm{A}) \cos \mathrm{A}}$
$=\frac{2+2 \sin \mathrm{~A}}{(1+\sin \mathrm{A}) \cos \mathrm{A}}=\frac{2(1+\sin \mathrm{A})}{(1+\sin \mathrm{A}) \cos \mathrm{A}}$
$=\frac{2}{\cos \mathrm{~A}}=2 \sec \mathrm{~A}$
$=$ RHS \quad Hence proved.
6. Let us construct a triangle ABC in which $\mathrm{AB}=\mathrm{BC}=\mathrm{AC}=a$ (say). Draw $\mathrm{AD} \perp \mathrm{BC}$.
AD bisects BC
$\Rightarrow \quad \mathrm{BD}=\mathrm{DC}=\frac{a}{2}$
AD bisects $\angle \mathrm{BAC}$
$\Rightarrow \quad \theta=30^{\circ}$

In right-angled $\triangle \mathrm{ABD}$.

$$
\begin{aligned}
\mathrm{AD}^{2} & =\mathrm{AB}^{2}-\mathrm{BD}^{2}=a^{2}-\left(\frac{a}{2}\right)^{2} \\
& =a^{2}-\frac{a^{2}}{4}=\frac{3 a^{2}}{4} \\
\Rightarrow \quad \mathrm{AD} & =\frac{\sqrt{3}}{2} a
\end{aligned}
$$

Now, in $\triangle \mathrm{ABD}$,

$$
\begin{aligned}
\tan \theta & =\frac{\mathrm{BD}}{\mathrm{AD}} \Rightarrow \tan 30^{\circ}=\frac{\frac{a}{2}}{\sqrt{3} \frac{a}{2}} \\
\Rightarrow \tan 30^{\circ} & =\frac{1}{\sqrt{3}} .
\end{aligned}
$$

7. $\left(a^{2}-b^{2}\right) \sin \theta+2 a b \cos \theta=a^{2}+b^{2}$ (Given)

Divide both sides by $\cos \theta$ to get
$\left(a^{2}-b^{2}\right) \tan \theta+2 a b=\left(a^{2}+b^{2}\right) \sec \theta$
Squaring both sides, we get

$$
\left(a^{2}-b^{2}\right)^{2} \tan ^{2} \theta+4 a^{2} b^{2}+4 a b\left(a^{2}-b^{2}\right) \tan \theta
$$

$$
=\left(a^{2}+b^{2}\right)^{2} \sec ^{2} \theta
$$

$\Rightarrow\left(a^{2}-b^{2}\right)^{2} \tan ^{2} \theta-\left(a^{2}+b^{2}\right)^{2} \tan ^{2} \theta+4 a b$

$$
\left(a^{2}-b^{2}\right) \tan \theta-\left(a^{2}+b^{2}\right)^{2}+4 a^{2} b^{2}=0
$$

$$
\left(\because \sec ^{2} \theta=1+\tan ^{2} \theta\right)
$$

$\Rightarrow-4 a^{2} b^{2} \tan ^{2} \theta+4 a b\left(a^{2}-b^{2}\right) \tan \theta$

$$
-\left(a^{2}-b^{2}\right)^{2}=0
$$

$\Rightarrow-4 a^{2} b^{2} x^{2}+4 a b\left(a^{2}-b^{2}\right) x-\left(a^{2}-b^{2}\right)^{2}=0$ where $x=\tan \theta$
This is a quadratic equation in x.
Here, discriminant,

$$
\begin{aligned}
& \mathrm{D}=\sqrt{16 a^{2} b^{2}\left(a^{2}-b^{2}\right)^{2}-4 \times 4 a^{2} b^{2}\left(a^{2}-b^{2}\right)^{2}} \\
&=0 \\
& \therefore x=\frac{-4 a b\left(a^{2}-b^{2}\right)-\sqrt{0}}{2 \times\left(-4 a^{2} b^{2}\right)}=\frac{a^{2}-b^{2}}{2 a b} \\
& \Rightarrow \tan \theta=\frac{a^{2}-b^{2}}{2 a b} . \quad \text { Hence proved. }
\end{aligned}
$$

8. Since $A B C$ is a acute angled triangle so, $\angle \mathrm{A}<90^{\circ}, \angle \mathrm{B}<90^{\circ}$ and $\angle \mathrm{C}<90^{\circ}$. Also $\angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{C}=180^{\circ}$
$\sin (A+B-C)=\frac{1}{2}$
$\Rightarrow \sin (A+B-C)=\sin 30^{\circ}$
$\Rightarrow \angle \mathrm{A}+\angle \mathrm{B}-\angle \mathrm{C}=30^{\circ}$
Similarly, $\angle \mathrm{B}+\angle \mathrm{C}-\angle \mathrm{A}=45^{\circ}$
Add equations (ii) and (iii) to get

$$
2 \angle \mathrm{~B}=75^{\circ} \Rightarrow \angle \mathrm{B}=37 \frac{1}{2}^{\circ}
$$

Subtract equation (ii) from equation (i) to get

$$
2 \angle C=150^{\circ} \Rightarrow \angle C=75^{\circ}
$$

Subtract equation (iii) from equation (i) to get

$$
2 \angle \mathrm{~A}=135^{\circ} \Rightarrow \angle \mathrm{A}=67 \frac{1}{2}^{\circ}
$$

Thus, $\angle \mathrm{A}=67 \frac{1}{2}^{\circ}, \angle \mathrm{B}=37 \frac{1}{2}^{\circ}$ and $\angle \mathrm{C}=75^{\circ}$.

CHAPTER TEST

1. $x=\frac{\sec \theta}{2}$ and $\frac{1}{x}=\frac{\tan \theta}{2}$

$$
\begin{aligned}
\therefore \quad 2\left(x^{2}-\frac{1}{x^{2}}\right) & =2\left(\frac{\sec ^{2} \theta}{4}-\frac{\tan ^{2} \theta}{4}\right) \\
& =2\left(\frac{\sec ^{2} \theta-\tan ^{2} \theta}{4}\right)=\frac{1}{2} .
\end{aligned}
$$

2. $\frac{\cos ^{2} 20^{\circ}+\cos ^{2} 70^{\circ}}{2\left(\sin ^{2} 59^{\circ}+\sin ^{2} 31^{\circ}\right)}=\frac{2}{k}$

$$
\Rightarrow \frac{\sin ^{2} 70^{\circ}+\cos ^{2} 70^{\circ}}{2\left(\sin ^{2} 59^{\circ}+\cos ^{2} 59^{\circ}\right)}=\frac{2}{k}
$$

$$
\Rightarrow \quad \frac{1}{2}=\frac{2}{k} \Rightarrow k=4
$$

3. $\sin ^{4} \theta+\cos ^{4} \theta=1+4 k \sin ^{2} \theta \cos ^{2} \theta$

$$
\begin{gathered}
\Rightarrow\left(\sin ^{2} \theta+\cos ^{2} \theta\right)^{2}-2 \sin ^{2} \theta \cos ^{2} \theta \\
\quad=1+4 k \sin ^{2} \theta \cos ^{2} \theta \\
\Rightarrow 2 \sin ^{2} \theta \cos ^{2} \theta(-1-2 k)=0 \\
\Rightarrow-1-2 k=0 \Rightarrow k=-\frac{1}{2} .
\end{gathered}
$$

4.

$$
\tan \theta=4
$$

$$
\begin{array}{lc}
\Rightarrow & \tan ^{2} \theta+1=4^{2}+1 \\
\Rightarrow & \sec ^{2} \theta=17
\end{array}
$$

$$
\therefore \quad \frac{1}{10}\left(\tan ^{2} \theta+2 \sec ^{2} \theta\right)=\frac{1}{10}(16+2 \times 17)
$$

$$
=5 .
$$

5. False.

Suppose $\mathrm{A}=30^{\circ}$ and $\mathrm{B}=60^{\circ}$
Then, LHS $=\tan (\mathrm{A}+\mathrm{B})=\tan \left(30^{\circ}+60^{\circ}\right)$

$$
\begin{equation*}
=\tan 90^{\circ} \tag{i}
\end{equation*}
$$

\Rightarrow LHS $\quad=$ undefined
and RHS $=\tan \mathrm{A}+\tan \mathrm{B}=\tan 30^{\circ}$

$$
=\frac{1}{\sqrt{3}}+\sqrt{\tan 60^{\circ}}=\frac{1+3}{\sqrt{3}}=\frac{4}{\sqrt{3}}
$$

$\Rightarrow \quad$ RHS $=$ a real number
From results (i) and (ii), it is clear that the given identity is false.
6. $\frac{-1}{7}$

Hint: $\quad \cos 55^{\circ}=\cos \left(90^{\circ}-35^{\circ}\right)=\sin 35^{\circ}$
$\cos 70^{\circ}=\sin 20^{\circ}$
and $\tan 5^{\circ}=\cot 85^{\circ}$.
7. $\frac{13}{4}$.

Hint: $\sin 30^{\circ}=\frac{1}{2}=\cos 60^{\circ}, \sin 60^{\circ}=\frac{\sqrt{3}}{2}$,
$\cos 45^{\circ}=\frac{1}{\sqrt{2}}=\sin 45^{\circ}, \sin 90^{\circ}=1$.
8. $\sin \theta+\cos \theta=a$

Squaring both sides.

$$
\begin{align*}
& \sin ^{2} \theta+\cos ^{2} \theta+2 \sin \theta \cos \theta=a^{2} \\
& \Rightarrow \quad 2 \sin \theta \cos \theta=a^{2}-1 \\
& \Rightarrow \quad \sin \theta \cos \theta=\frac{a^{2}-1}{2} \tag{i}
\end{align*}
$$

Now, $\sin ^{6} \theta+\cos ^{6} \theta=\left(\sin ^{2} \theta+\cos ^{2} \theta\right)^{3}$

$$
\begin{array}{r}
-3 \sin ^{2} \theta \cos ^{2} \theta\left(\sin ^{2} \theta+\cos ^{2} \theta\right) \\
=1^{3}-3\left(\frac{a^{2}-1}{2}\right)^{2} \tag{1}
\end{array}
$$

[Using equation (i)]

$$
=1-\frac{3}{4}\left(a^{2}-1\right)^{2}=\frac{4-3\left(a^{2}-1\right)^{2}}{4} .
$$

Hence proved.

$$
\text { 9. } \begin{aligned}
\text { LHS } & =\frac{(\sec \theta+\tan \theta)^{2}-1}{(\sec \theta+\tan \theta)^{2}+1} \\
& =\frac{\sec ^{2} \theta+\tan ^{2} \theta+2 \sec \theta \tan \theta-1}{\sec ^{2} \theta+\tan ^{2} \theta+2 \sec \theta \tan \theta+1} \\
& =\frac{\left(\sec ^{2} \theta-1\right)+\tan ^{2} \theta+2 \sec \theta \tan \theta}{\sec ^{2} \theta+\left(\tan ^{2} \theta+1\right)+2 \sec \theta \tan \theta} \\
& =\frac{\tan ^{2} \theta+\tan ^{2} \theta+2 \sec \theta \tan \theta}{\sec ^{2} \theta+\sec ^{2} \theta+2 \sec \theta \tan \theta} \\
& =\frac{2 \tan \theta(\tan \theta+\sec \theta)}{2 \sec \theta(\sec \theta+\tan \theta)} \\
& =\frac{\tan \theta}{\sec \theta}=\tan \theta \cos \theta
\end{aligned}
$$

$=\frac{\sin \theta}{\cos \theta} \cdot \cos \theta=\sin \theta=$ RHS.
Hence proved.
OR

$$
\begin{aligned}
& \frac{\sin A-\sin B}{\cos A+\cos B}+\frac{\cos A-\cos B}{\sin A+\sin B} \\
& =\frac{(\sin A-\sin B)(\sin A+\sin B)}{(\cos A+\cos B)(\cos A+\cos B)(\sin A+\sin B)} \\
& =\frac{\sin ^{2} A-\sin ^{2} B+\cos ^{2} A-\cos ^{2} B}{(\cos A+\cos B)(\sin A+\sin B)} \\
& =\frac{\left(\sin ^{2} A+\cos ^{2} A\right)-\left(\sin ^{2} B+\cos ^{2} B\right)}{(\cos A+\cos B)(\sin A+\sin B)} \\
& =\frac{1-1}{(\cos A+\cos B)(\sin A+\sin B)} \\
& =0 \text { which is an integer. }
\end{aligned}
$$

WORKSHEET-65

1. $\cos 30^{\circ}=\frac{3}{l}$

$$
\Rightarrow \quad l=2 \sqrt{3} \mathrm{~m} .
$$

2. From figure, let $h=\mathrm{AB}=$ height of pole; $B C=2 \sqrt{3} \mathrm{~m}=$ shadow length

\therefore In right-angled $\triangle \mathrm{ABC}$;

$$
\begin{array}{rlrl}
& & \tan 60^{\circ} & =\frac{\mathrm{AB}}{\mathrm{BC}}=\frac{h}{2 \sqrt{3}} \\
\Rightarrow & \sqrt{3} & =\frac{h}{2 \sqrt{3}} \\
\Rightarrow & & h & =2 \sqrt{3} \times \sqrt{3}=6 \mathrm{~m} .
\end{array}
$$

3. Let the height of the tower be h.
$\tan 30^{\circ}=\frac{\text { Perpendicular }}{\text { Base }}$

$$
\Rightarrow-\frac{1}{\sqrt{3}}=\frac{h}{30} \Rightarrow h=10 \sqrt{3} \mathrm{~m} .
$$

4. Let OA be the horizontal ground and K be the position of the kite at a height $h \mathrm{~m}$ above the ground, then $\mathrm{AK}=h \mathrm{~m}$. It is given that $\mathrm{OK}=100 \mathrm{~m}$,
 $\angle A O K=60^{\circ}$.
In $\triangle \mathrm{AOK}$, right angled at A , we have

$$
\sin 60^{\circ}=\frac{h}{100} \Rightarrow h=100 \sin 60^{\circ}
$$

$$
\Rightarrow \quad h=100 \times \frac{\sqrt{3}}{2}=50 \sqrt{3}=50 \times 1.732
$$

$$
\therefore \quad h=86.60 \mathrm{~m} .
$$

$5.4 .28 \mathrm{~m}, 2.14 \mathrm{~m}$
Hint: $\sin 60^{\circ}=\frac{3.7}{l}$

$$
\tan 60^{\circ}=\frac{3.7}{x} .
$$

6. Height $=94.64 \mathrm{~m}$, Distance $=109.3 \mathrm{~m}$

Hint:

$$
\begin{aligned}
\tan 45^{\circ} & =\frac{\mathrm{QM}}{\mathrm{YM}} \Rightarrow \mathrm{YM}=\mathrm{QM} \\
\text { But } \quad \mathrm{XP} & =\mathrm{YM} \\
\therefore \quad \mathrm{XP} & =\mathrm{QM} \\
\tan 60^{\circ} & =\frac{40+\mathrm{QM}}{\mathrm{QM}} \cdot 40 \mathrm{~m}
\end{aligned}
$$

7. Let BD be the tower of height $h \mathrm{~m}$ and CD be the pole. In right-angled triangle ABD,

$$
\tan 45^{\circ}=\frac{\mathrm{BD}}{\mathrm{AB}}
$$

$\Rightarrow \quad 1=\frac{h}{\mathrm{AB}} \Rightarrow \mathrm{AB}=h$
In right-angled triangle ABC ,

$$
\begin{aligned}
& & \tan 60^{\circ} & =\frac{\mathrm{BC}}{\mathrm{AB}} \Rightarrow \sqrt{3}=\frac{\mathrm{BD}+\mathrm{CD}}{\mathrm{AB}} \\
& \Rightarrow & \frac{h+5}{h} & =\sqrt{3} \\
& \Rightarrow & h & =\frac{5}{\sqrt{3}-1} \Rightarrow h=\frac{5}{1.732-1} \\
& \Rightarrow & h & =6.83 \mathrm{~m} .
\end{aligned}
$$

8. Let $\mathrm{AB}=$ height of building
and $C D=$ height of tower
\therefore To find: (i) Difference between heights

$$
=\mathrm{CD}-\mathrm{DE} \quad[\because \mathrm{AB}=\mathrm{DE}]
$$

(ii) $\mathrm{BD}=$ Distance between bottoms
In right-angled $\triangle \mathrm{ABD}$, $\angle \mathrm{ADB}=\angle \mathrm{EAD}=60^{\circ}$
$\therefore \quad \tan 60^{\circ}=\frac{\mathrm{AB}}{\mathrm{BD}}$
$\Rightarrow \quad \sqrt{3}=\frac{60}{\mathrm{BD}}$

$\Rightarrow \quad \mathrm{BD}=\frac{60}{\sqrt{3}}=\frac{60 \sqrt{3}}{3}=20 \sqrt{3} \mathrm{~m}$
$\therefore \quad \mathrm{BD}=20 \sqrt{3} \mathrm{~m}$
Also as ABDE is a rectangle
$\therefore \mathrm{AB}=\mathrm{DE}=60 \mathrm{~m}$ and $\mathrm{BD}=\mathrm{AE}=20 \sqrt{3} \mathrm{~m}$
\therefore In right-angled $\triangle A E C$,

$$
\begin{aligned}
\tan 30^{\circ} & =\frac{\mathrm{CE}}{\mathrm{AE}} \Rightarrow \frac{1}{\sqrt{3}}=\frac{\mathrm{CE}}{20 \sqrt{3}} \\
\Rightarrow \quad \mathrm{CE} & =\frac{20 \sqrt{3}}{\sqrt{3}}=20 \mathrm{~m}
\end{aligned}
$$

\therefore Difference between heights $=C E=20 \mathrm{~m}$

WORKSHEET-66

1.

$$
\begin{aligned}
\angle \mathrm{ACB} & =\angle \mathrm{XAC}=45^{\circ} \\
\sin (\angle \mathrm{ACB}) & =\frac{20}{x} \text { and } \tan (\angle \mathrm{ACB})=\frac{20}{y} \\
\Rightarrow \quad x & \quad x
\end{aligned}=20 \sqrt{2} \mathrm{~m} \text { and } y=20 \mathrm{~m} . ~ ل r
$$

2. $\tan 60^{\circ}=\frac{h}{20}$.

$$
\begin{array}{ll}
\Rightarrow & \sqrt{3}=\frac{h}{20} \\
\Rightarrow & h=20 \sqrt{3} \mathrm{~m} .
\end{array}
$$

3. Let the length of shadow of pole $A B$ be $\mathrm{BC}=x$, then AB $=x$.
Also let θ be the angle of elevation of Sun's altitude. In rightangled triangle ABC,
 $\tan \theta=\frac{x}{x} \Rightarrow \theta=45^{\circ}$
Hence, the angle of elevation of the Sun's altitude is 45°.
4. Let the angle of elevation be θ. Let the observer be AB with his eye at A and the tower be EC.

$$
\begin{aligned}
\therefore C D & =A B=1.5 \mathrm{~m} \\
\mathrm{ED} & =30-1.5=28.5 \mathrm{~m}
\end{aligned}
$$

And $\mathrm{AD}=\mathrm{BC}=28.5 \mathrm{~m}$
In right-angled $\triangle \mathrm{ADE}$,

$$
\tan \theta=\frac{\mathrm{DE}}{\mathrm{AD}}=\frac{28.5}{28.5}=1 \Rightarrow \theta=45^{\circ} .
$$

5. Let the balloon be at the point O , the thread be OA and the required height be OB.
Case I: The cable is inclined at 60°.
$\Rightarrow \sin 60^{\circ}=\frac{\mathrm{OB}}{\mathrm{OA}}$
$\Rightarrow \quad \frac{\sqrt{3}}{2}=\frac{\mathrm{OB}}{215}$
$\Rightarrow \quad \mathrm{OB}=\frac{215 \sqrt{3}}{2}$

$$
=\frac{215 \times 1.732}{2}=186.19 \mathrm{~m} .
$$

Case II: The cable is inclined at $60^{\circ}-15^{\circ}$

$$
=45^{\circ}
$$

$$
\begin{aligned}
\sin 45^{\circ} & =\frac{\mathrm{OB}}{\mathrm{OA}} \Rightarrow \frac{1}{\sqrt{2}}=\frac{\mathrm{OB}}{215} \\
\Rightarrow \quad \mathrm{OB} & =\frac{215}{\sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}}=\frac{215 \sqrt{2}}{2} \\
& =\frac{215 \times 1.414}{2}=152 \mathrm{~m} \text { (approx.) }
\end{aligned}
$$

So, reduced height $=186.19 \mathrm{~m}-152 \mathrm{~m}$

$$
=34.19 \mathrm{~m}
$$

6. Let $A B$ is a hill and C and D be two city centres subject to the angles of elevation of the top A of hill $A B$ at C and D are 30° and 60° respectively, then $\angle \mathrm{ACB}=30^{\circ}, \angle \mathrm{ADB}$ $=60^{\circ}, \mathrm{AC}=9 \mathrm{~km}$.

In right-angled $\triangle A B C$,

$$
\begin{aligned}
& \sin 30^{\circ}=\frac{\mathrm{AB}}{9} \\
& \Rightarrow \mathrm{AB}=9 \times \sin 30^{\circ}=9 \times \frac{1}{2}=4.5
\end{aligned}
$$

In right-angled $\triangle A B D$, we have

$$
\begin{aligned}
\sin 60^{\circ} & =\frac{\mathrm{AB}}{\mathrm{AD}} \\
\Rightarrow \quad \mathrm{AD} & =\mathrm{AB} \operatorname{cosec} 60^{\circ} \\
\Rightarrow \quad \mathrm{AD} & =4.5 \times \frac{2}{\sqrt{3}}=\frac{9 \times \sqrt{3}}{\sqrt{3} \times \sqrt{3}} \\
& =3 \sqrt{3}=3 \times 1.732 \\
& =5.196 \approx 5.20 \mathrm{~km} .
\end{aligned}
$$

7. Let $\angle \mathrm{PAQ}=\alpha$ and $\angle \mathrm{PBQ}=\beta$

\therefore It is given that $\cot \alpha=\frac{3}{10}$ and $\cot \beta$

$$
=\frac{1}{2} .
$$

Clearly, since Q, A and B are in same plane

$$
\therefore \quad \angle \mathrm{PQA}=\angle \mathrm{PQB}=90^{\circ} .
$$

and it is given that

$$
\angle \mathrm{QAB}=90^{\circ} .
$$

\therefore In right-angled $\triangle \mathrm{QAB}$, let $\mathrm{QA}=x$.

$$
\begin{array}{ll}
& \mathrm{QB}^{2}=\mathrm{QA}^{2}+\mathrm{AB}^{2} \\
\Rightarrow & \mathrm{QB}^{2}=x^{2}+40^{2} \\
\Rightarrow & \mathrm{QB}=\sqrt{x^{2}+1600}
\end{array}
$$

Now, in $\triangle \mathrm{PQA}$;

$$
\begin{array}{rlrl}
& & \cot \alpha & =\frac{\mathrm{AQ}}{\mathrm{PQ}} \\
\Rightarrow & \quad \frac{x}{h} & =\frac{3}{10} \\
\Rightarrow & & x & =\frac{3 h}{10} \tag{i}
\end{array}
$$

Also, in $\triangle \mathrm{PQB} ; \frac{\mathrm{QB}}{\mathrm{PQ}}=\cot \beta=\frac{1}{2}$

$$
\begin{array}{ll}
\Rightarrow & \frac{\sqrt{x^{2}+1600}}{h}=\frac{1}{2} \\
\Rightarrow & x^{2}+1600=\frac{h^{2}}{4} \tag{ii}
\end{array}
$$

Using (i) in (ii),

$$
\begin{aligned}
& \left(\frac{3 h}{10}\right)^{2}+1600=\frac{h^{2}}{4} \\
& \Rightarrow \quad \frac{9 h^{2}}{100}+1600=\frac{h^{2}}{4} \\
& \Rightarrow \quad \frac{h^{2}}{4}-\frac{9 h^{2}}{100}=1600 \\
& \Rightarrow \quad 16 h^{2}=1600 \times 100 \\
& \Rightarrow \quad h=100
\end{aligned}
$$

\therefore Height of tower is 100 m .
8.2 m

Hint: $h=$ height of pedestal $\tan 45^{\circ}=\frac{h}{x} \Rightarrow x=h$
$\tan 60^{\circ}=\frac{h+1.46}{h}$.

WORKSHEET-67

1. $y=\sqrt{3} x$

$$
\begin{aligned}
y & =\sqrt{3} x \\
\Rightarrow \quad \frac{1}{\sqrt{3}} & =\frac{x}{y}=\tan \theta^{x} \\
\Rightarrow \quad \theta & =30^{\circ} \quad \theta \quad y=\text { length of shadow }
\end{aligned}
$$

2. In $\triangle \mathrm{ABC}$,

$$
\begin{array}{rlrl}
\tan 60^{\circ} & =\frac{\mathrm{AB}}{\mathrm{BC}} \\
\Rightarrow \quad \sqrt{3} & =\frac{30}{\mathrm{BC}} & \\
\mathrm{BC} & =\frac{30}{\sqrt{3}}, \quad \therefore \mathrm{BC}=10 \sqrt{3} \mathrm{~m} .
\end{array}
$$

3. True.

$$
\tan \mathrm{C}=\frac{\mathrm{AB}}{\mathrm{BC}}=\frac{h}{x}
$$

If $\quad \mathrm{AB}=\frac{11 h}{10}$
and $\quad B C=\frac{11 x}{10}$

Then, $\tan \mathrm{C}=\frac{\mathrm{AB}}{\mathrm{BC}}=\frac{h}{x}$.
4. Let the height of the tower CD be y metres and the horizontal distance of point A from the building BC is $\mathrm{AB}=x$ metres.
In right-angled triangle ABC,

$\tan 45^{\circ}=\frac{20}{x} \Rightarrow x=20 \mathrm{~m}$
Also, in right-angled triangle ABD ,

$$
\begin{aligned}
& \tan 60^{\circ} & =\frac{20+y}{x} \\
\Rightarrow & \quad 20 \sqrt{3} & =20+y \\
\Rightarrow & y & =20(\sqrt{3}-1) \mathrm{m}
\end{aligned}
$$

Thus, the height of the tower is $20(\sqrt{3}-1) \mathrm{m}$.
5. $7(\sqrt{3}+1) \mathrm{m}$

Hint: $\tan 45^{\circ}=\frac{\mathrm{AE}}{\mathrm{EC}}$

$$
\Rightarrow \quad \mathrm{EC}=7 \mathrm{~m}
$$

$$
\tan 60^{\circ}=\frac{\mathrm{DE}}{\mathrm{EC}}
$$

6. Let C be the position of a window of house AC which is h metres above the ground, i.e., $\mathrm{AC}=h \mathrm{~m}$. BE be the house on the opposite side of the street. The angle of elevation and depression of the top and foot of the opposite house from the window
 C be α and β, respectively.

Then according to question, we have

$$
\begin{aligned}
\angle \mathrm{DCE} & =\alpha \\
\text { and } \angle \mathrm{BCD} & =\beta
\end{aligned}
$$

Let $\quad \mathrm{DE}=x \mathrm{~m}$
In right triangle $C D E$, we have

$$
\begin{align*}
\tan \alpha & =\frac{\mathrm{DE}}{\mathrm{CD}} \\
\Rightarrow \quad \tan \alpha & =\frac{x}{\mathrm{CD}} \Rightarrow \mathrm{CD}=\frac{x}{\tan \alpha} \\
\Rightarrow \quad \mathrm{CD} & =x \cot \alpha \tag{i}
\end{align*}
$$

In right triangle $B C D$, we have

$$
\begin{align*}
& \frac{\mathrm{BD}}{\mathrm{CD}}=\tan \beta \\
& \Rightarrow \quad \mathrm{CD} \\
& \Rightarrow \quad \frac{\mathrm{BD}}{\tan \beta} \Rightarrow \mathrm{CD}=\frac{h}{\tan \beta} \tag{ii}\\
& \Rightarrow \quad \mathrm{CD}=h \cot \beta
\end{align*}
$$

Comparing (i) and (ii), we get

$$
x \cot \alpha=h \cot \beta
$$

$\Rightarrow \quad x=\frac{h \cot \beta}{\cot \alpha}$
$\Rightarrow \quad x=h \cot \beta \cdot \tan \alpha$
Hence, height of the opposite house (BE)

$$
\begin{aligned}
& =\mathrm{BD}+\mathrm{DE} \\
& =h+x \\
& =h+h \cot \beta \cdot \tan \alpha \\
& =h(1+\cot \beta \cdot \tan \alpha)
\end{aligned}
$$

Hence proved.
7. Let the tower be $B C$ the flagstaff be $A B$ and the point on the plane be P.
Let $\mathrm{BC}=h$
In right-angled $\triangle B C P$,

$$
\begin{aligned}
\tan 30^{\circ} & =\frac{h}{\mathrm{PC}} \\
\Rightarrow \quad \mathrm{PC} & =h \cot 30^{\circ}
\end{aligned}
$$

In right-angled $\triangle \mathrm{ACP}$,

$$
\begin{align*}
\tan 60^{\circ} & =\frac{5+h}{\mathrm{PC}} \\
\Rightarrow \quad \mathrm{PC} & =(5+h) \cot 60^{\circ} \tag{ii}
\end{align*}
$$

Comparing equations (i) and (ii), we have $h \cot 30^{\circ}=(5+h) \cot 60^{\circ}$

$$
\begin{array}{rlrl}
\Rightarrow & & h \sqrt{3} & =(5+h) \frac{1}{\sqrt{3}} \\
\Rightarrow & 3 h & =5+h
\end{array}
$$

$\Rightarrow \quad h=2.5$
Hence, the height of the tower is 2.5 m .

OR

Let the two planes be at A and Brespectively. Also P be the point on the ground In right-angled triangle APC,

$$
\begin{aligned}
\tan 30^{\circ} & =\frac{3125}{\mathrm{PC}} \\
\Rightarrow \quad \mathrm{PC} & =3125 \sqrt{3} \mathrm{~m}
\end{aligned}
$$

Also in right-angled triangle BPC,

$$
\begin{array}{rlrl}
\tan 60^{\circ} & =\frac{\mathrm{BC}}{\mathrm{PC}} \\
\Rightarrow & & \mathrm{BC} & =3125 \sqrt{3} \times \sqrt{3}=3 \times 3125 \\
\therefore & \mathrm{AB} & =\mathrm{BC}-\mathrm{AC}=3 \times 3125-3125 \\
& & =2 \times 3125=6250 \mathrm{~m} .
\end{array}
$$

Hence, distance between the two planes is 6250 m .
8. Let $\mathrm{PD} \perp \mathrm{AB}$

Let $\mathrm{AD}=x \quad \therefore \mathrm{DB}=50-x$
(i) In right-angled $\triangle \mathrm{PDA} ; \underset{\mathrm{P}}{\tan } 60^{\circ}=\frac{\mathrm{PD}}{\mathrm{AD}}$
$\Rightarrow \sqrt{3}=\frac{\mathrm{PD}}{x}$
$\Rightarrow \mathrm{PD}=x \sqrt{3}$.

Also in right-angled $\triangle \mathrm{PDB} ; \tan 30^{\circ}=\frac{\mathrm{PD}}{\mathrm{DB}}$
$\Rightarrow \frac{1}{\sqrt{3}}=\frac{x \sqrt{3}}{50-x} \Rightarrow 50-x=3 x$
$\Rightarrow 50=4 x \Rightarrow x=\frac{50}{4}=\frac{25}{2}=12.5 \mathrm{~m}$
\therefore In right-angled $\triangle \mathrm{ADP} ; \sin 60^{\circ}=\frac{\mathrm{PD}}{\mathrm{AP}}$
$\Rightarrow \mathrm{AP}=\frac{\mathrm{PD}}{\sin 60^{\circ}}=\frac{x \sqrt{3}}{\frac{\sqrt{3}}{2}}=12.5 \times 2=25 \mathrm{~m}$
$\therefore \mathrm{AP}=25 \mathrm{~m}$
$\therefore \mathrm{AP}=25 \mathrm{~m}$
(ii) In right-angled $\triangle \mathrm{PDB} ; \sin 30^{\circ}=\frac{\mathrm{PD}}{\mathrm{PB}}$ $\Rightarrow \frac{1}{2}=\frac{\mathrm{PD}}{\mathrm{PB}}$
$\Rightarrow \mathrm{PB}=2 \mathrm{PD}=2 \times x \sqrt{3}=2 \times 12.5 \times \sqrt{3}$
$P B=25 \sqrt{3} \mathrm{~m}$.
(iii) Clearly as PA < PB
\Rightarrow Team of A should send its team.
(iv) Cooperation and responsibility.

WORKSHEET-68

1. $\tan 45^{\circ}=\frac{\mathrm{OP}}{\mathrm{PQ}}=\frac{a}{\mathrm{QP}}$

$$
\begin{aligned}
\Rightarrow & 1 & =\frac{a}{\mathrm{QP}} \\
\Rightarrow & \mathrm{QP} & =a \mathrm{~m}
\end{aligned}
$$

$$
\begin{aligned}
\therefore \operatorname{ar}(\triangle \mathrm{OPQ}) & =\frac{1}{2} \times \mathrm{QP} \times \mathrm{OP} \\
& =\frac{1}{2} \times a \times a=\frac{1}{2} a^{2}
\end{aligned}
$$

2. $\tan 60^{\circ}=\frac{\mathrm{TP}}{\mathrm{PO}}$

$$
\begin{array}{ll}
\Rightarrow & \sqrt{3}=\frac{\mathrm{TP}}{40} \\
\Rightarrow & \mathrm{TP}=40 \sqrt{3} \mathrm{~m} .
\end{array}
$$

3. True

$$
\begin{aligned}
& \tan 30^{\circ} & =\frac{\mathrm{AB}}{\mathrm{BC}} \\
\Rightarrow & \frac{1}{\sqrt{3}} & =\frac{\mathrm{AB}}{81} \\
\Rightarrow & \mathrm{AB} & =\frac{81}{\sqrt{3}}=\frac{81 \sqrt{3}}{3} \mathrm{c} \frac{30^{\circ}}{81} \\
\Rightarrow & \mathrm{AB} & =\frac{81 \times 1.732}{3}=46.76 \mathrm{~m} .
\end{aligned}
$$

4. Let the height of the pole $\mathrm{AB}=x \mathrm{~m}$

Length of the rope $A C=20 \mathrm{~m}$
In $\triangle \mathrm{ABC}$,

$$
\begin{aligned}
& & \angle \mathrm{ACB} & =30^{\circ} \\
& \therefore & \sin 30^{\circ} & =\frac{\mathrm{AB}}{\mathrm{AC}} \\
& \Rightarrow & \frac{1}{2} & =\frac{x}{20} \\
& \Rightarrow & x & =10 \mathrm{~m}
\end{aligned}
$$

\therefore Height of the pole $=10 \mathrm{~m}$.
5. Let $(\mathrm{AB}=h)$ is the height of the light house.

Point D and C are position of the ships from the root of the light house. Distance between D and $\mathrm{C}=200 \mathrm{~m}$, i.e., $(\mathrm{DC}=200)$.
Again let $\mathrm{BD}=x$
In right triangle $A B D$, we have

$$
\tan 45^{\circ}=\frac{\mathrm{AB}}{\mathrm{BD}}
$$

In right triangle $A B C$

$$
\begin{align*}
\tan 30^{\circ} & =\frac{\mathrm{AB}}{\mathrm{BC}} \\
\frac{1}{\sqrt{3}} & =\frac{h}{x+200} \\
x+200 & =\sqrt{3} h \tag{ii}
\end{align*}
$$

From (i) and (ii), we have

$$
\begin{aligned}
h+200 & =\sqrt{3} h \\
200 & =\sqrt{3} h-h \\
200 & =h(\sqrt{3}-1) \\
\frac{200}{\sqrt{3}-1} & =h \\
\therefore \quad h & =\frac{200}{\sqrt{3}-1} \times \frac{\sqrt{3}+1}{\sqrt{3}+1}=\frac{200(\sqrt{3}+1)}{3-1} \\
& =\frac{200(\sqrt{3}+1)}{2}=100 \times \sqrt{3}+100 \\
& =100 \times 1.732+100 \\
& =\frac{100 \times 1732}{1000}+100 \\
& =173.2+100=273.2 \mathrm{~m} .
\end{aligned}
$$

6. 6.34 m

Hint: $\quad \tan 45^{\circ}=\frac{y_{1}+y_{2}}{15}$

$$
y_{1}+y_{2}=15 \quad \ldots(i)
$$

$\tan 30^{\circ}=\frac{y_{1}}{15}$

3. False.

Let height of the tower is h metres so the angle of elevation is 30°.

$$
\begin{array}{rlrl}
\tan 30^{\circ} & =\frac{h}{\mathrm{BC}} \\
\Rightarrow \quad & \frac{1}{\sqrt{3}} & =\frac{h}{\mathrm{BC}} \\
\Rightarrow \quad & \mathrm{BC} & =h \sqrt{3} \tag{i}
\end{array}
$$

When height $=2 h$,

$$
\begin{aligned}
\tan \theta & =\frac{\mathrm{AB}}{\mathrm{BC}} \\
\Rightarrow \quad \tan \theta & =\frac{2 h}{h \sqrt{3}} \\
\Rightarrow \quad \tan \theta & =\frac{2}{\sqrt{3}} \neq \tan 60^{\circ} .
\end{aligned}
$$

[From (i)]
4. Let AB be the ladder leaning against a wall OB such that $\angle \mathrm{OAB}=60^{\circ}$ and $\mathrm{OA}=9.6 \mathrm{~m}$. In $\triangle \mathrm{OAB}$ right angled at O , we have

$$
\begin{aligned}
\cos 60^{\circ} & =\frac{\mathrm{OA}}{\mathrm{AB}} \\
\Rightarrow \quad \mathrm{AB} & =\frac{\mathrm{OA}}{\cos 60^{\circ}} \\
\Rightarrow \quad \mathrm{AB} & =\frac{9.6}{0.5}=19.2 \mathrm{~m} .
\end{aligned}
$$

5. Let the point, cloud and reflection of the cloud be at P, Q and Q^{\prime} respectively.

Let $\mathrm{PM}=x, \mathrm{QM}=y$
We have to find QB, i.e., $y+h$ In right-angled triangle QPM,

$$
\begin{equation*}
\tan \alpha=\frac{y}{x} \Rightarrow x=\frac{y}{\tan \alpha} \tag{i}
\end{equation*}
$$

Also in right-angled triangle $Q^{\prime} P M$,

$$
\begin{aligned}
\tan \beta & =\frac{y+2 h}{x} \\
\Rightarrow \quad \frac{y \tan \beta}{\tan \alpha} & =y+2 h
\end{aligned}
$$

$$
\Rightarrow \quad y\left(\frac{\tan \beta}{\tan \alpha}-1\right)=2 h
$$

[From equation (i)]

$$
\Rightarrow \quad y+h=h\left[1+\frac{2 \tan \alpha}{\tan \beta-\tan \alpha}\right]
$$

$$
=\frac{h(\tan \beta+\tan \alpha)}{\tan \beta-\tan \alpha}
$$

Hence proved.
6.

Let $\mathrm{AB}=24 \mathrm{~m} ; \mathrm{CD}=h ; \mathrm{CE}=\mathrm{DB}=15 \mathrm{~m}$
\therefore In right $\triangle \mathrm{AEC}$:

$$
\tan 30^{\circ}=\frac{\mathrm{AE}}{\mathrm{CE}} \Rightarrow \frac{1}{\sqrt{3}}=\frac{\mathrm{AE}}{15}
$$

$\Rightarrow \quad \mathrm{AE}=\frac{15}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}}=5 \sqrt{3} \mathrm{~m}$.
\therefore Height of first pole $=\mathrm{CD}=h=\mathrm{AB}-\mathrm{AE}$

$$
\begin{aligned}
& =24-5 \sqrt{3} \\
& =24-5 \times 1.732 \\
& =24-8.660=15.340 \mathrm{~m}
\end{aligned}
$$

7. Let $\mathrm{CD}=60 \mathrm{~m}=$ height of building
$\mathrm{AB}=h=$ height of light house.
$\therefore \quad \mathrm{AE}=$ difference between height
and $\mathrm{BC}=$ distance between building and light house
\therefore In right $\triangle D C B, \tan 60^{\circ}=\frac{D C}{B C}$

$$
\Rightarrow \quad \sqrt{3}=\frac{60}{\mathrm{BC}} \Rightarrow \mathrm{BC}=\frac{60}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}}
$$

$$
=20 \sqrt{3} \mathrm{~m}
$$

Light house

Also In right $\triangle \mathrm{AED}$,

$$
\begin{aligned}
& \tan 30^{\circ}=\frac{\mathrm{AE}}{\mathrm{DE}} \\
& \Rightarrow \frac{1}{\sqrt{3}}=\frac{\mathrm{AE}}{\mathrm{BC}} \quad \quad[\because \mathrm{DE}=\mathrm{BC}] \\
& \Rightarrow \frac{1}{\sqrt{3}}=\frac{\mathrm{AE}}{20 \sqrt{3}} \Rightarrow \mathrm{AE}=\frac{20 \sqrt{3}}{\sqrt{3}}=20 \mathrm{~m}
\end{aligned}
$$

\therefore (i) difference between heights $=20 \mathrm{~m}$
(ii) distance between building $=20 \sqrt{3} \mathrm{~m}$.
8. Let the tower, the flagstaff and the point on the plane be AB, BC and P respectively.
Let $\mathrm{AB}=y$ and $\mathrm{AP}=x$ In $\triangle \mathrm{ABP}$,

$$
\begin{align*}
\tan \alpha & =\frac{y}{x} \\
\Rightarrow \quad \frac{1}{x} & =\frac{\tan \alpha}{y} \tag{i}
\end{align*}
$$

In $\triangle \mathrm{ACP}, \tan \beta=\frac{h+y}{x}$

$$
\begin{equation*}
\Rightarrow \quad \frac{1}{x}=\frac{\tan \beta}{h+y} \tag{ii}
\end{equation*}
$$

From equations (i) and (ii), we have

$$
\frac{\tan \alpha}{y}=\frac{\tan \beta}{h+y}
$$

$\Rightarrow y \tan \beta=h \tan \alpha+y \tan \alpha$
$\Rightarrow y(\tan \beta-\tan \alpha)=h \tan \alpha$
$\Rightarrow y=\frac{h \tan \alpha}{\tan \beta-\tan \alpha}$. Hence proved.
WORKSHEET-70

1. $\quad \tan \mathrm{C}=\frac{\mathrm{AB}}{\mathrm{BC}}=\frac{h}{\sqrt{3} h}$
$\Rightarrow \quad \tan \theta=\frac{1}{\sqrt{3}}=\tan 30^{c}$
$\Rightarrow \quad \theta=30^{\circ}$.

2. Let $\mathrm{AC}=l=$ length of ladder

and

$$
\begin{aligned}
\angle \mathrm{ACB} & =60^{\circ} \\
\mathrm{BC} & =2.5 \mathrm{~m}
\end{aligned}
$$

\angle In right-angled $\angle \triangle \mathrm{ABC}$;

$$
\begin{aligned}
& \cos \theta & =\frac{\mathrm{BC}}{\mathrm{AC}} \\
\Rightarrow & \cos 60^{\circ} & =\frac{2.5}{l} \\
\Rightarrow & \frac{1}{2} & =\frac{2.5}{l} \\
\Rightarrow & l & =5 \mathrm{~m} .
\end{aligned}
$$

3. True.

As $\tan \theta=\frac{A B}{B C}$
$\Rightarrow \quad \tan \theta=\frac{\mathrm{AB}}{\mathrm{AB}}$

$$
(\because \mathrm{AB}=\mathrm{BC})
$$

$\Rightarrow \quad \tan \theta=1=\tan 45^{\circ}$
$\therefore \quad \theta=45^{\circ}$.
MATHEMATITCS-X
4. Let $A B$ be the tower and C be the point on the ground.
In $\triangle \mathrm{ABC}$,

$$
\begin{aligned}
& \tan 30^{\circ}=\frac{\mathrm{AB}}{\mathrm{BC}} \\
& \Rightarrow \frac{1}{\sqrt{3}}=\frac{\mathrm{AB}}{30} \quad \begin{array}{c}
\text { (A point on } \\
\text { the ground) }
\end{array} \\
& \Rightarrow \mathrm{AB}=\frac{30}{\sqrt{3}}=10 \sqrt{3} \mathrm{~m} .
\end{aligned}
$$

Hence, the height of the tower is $10 \sqrt{3} \mathrm{~m}$.
5. Let $\mathrm{AB}=$ height of cliff $=60 \sqrt{3} \mathrm{~m}$
$\mathrm{CD}=h=$ height of tower

\therefore In right $\triangle \mathrm{ABC}$,

$$
\begin{aligned}
\tan 60^{\circ} & =\frac{A B}{B C} \Rightarrow \sqrt{3}=\frac{60 \sqrt{3}}{B C} \\
\Rightarrow \quad B C & =60 \mathrm{~m} \therefore \quad \mathrm{ED}=\mathrm{BC}=60 \mathrm{~m}
\end{aligned}
$$

\therefore In right $\triangle \mathrm{AED}$,

$$
\begin{aligned}
\tan 45^{\circ} & =\frac{\mathrm{AE}}{\mathrm{ED}} \\
1 & =\frac{\mathrm{AE}}{60} \Rightarrow \mathrm{AE}=60 \mathrm{~m} \\
\therefore \quad h & =\mathrm{DC}=\mathrm{EB}=\mathrm{AB}-\mathrm{AE} \\
& =60 \sqrt{3}-60 \\
& =60(\sqrt{3}-1) \mathrm{m} .
\end{aligned}
$$

6. Let the aeroplane's first situation be at A and second at B. Let the point of observation be at O .
From right-angled $\triangle \mathrm{AOD}$,

$$
\tan 45^{\circ}=\frac{\mathrm{AD}}{\mathrm{OD}} \Rightarrow \mathrm{OD}=3000 \mathrm{~m}
$$

Again from right-angled $\triangle B O C$,

$$
\begin{aligned}
\tan 30^{\circ} & =\frac{3000}{3000+\mathrm{DC}} \\
\Rightarrow \quad D C & =3000(\sqrt{3}-1) \mathrm{m}
\end{aligned}
$$

Now speed of the plane

$$
\begin{aligned}
& =\frac{\text { Distance }}{\text { Time }}=\frac{3000(\sqrt{3}-1)}{15} \\
& =146.42 \mathrm{~m} / \mathrm{sec}
\end{aligned}
$$

7. Let $\mathrm{AB}=60 \mathrm{~m}=$ height of tower
$C D=h=$ height of building
\therefore In right $\triangle A B D, \tan 60^{\circ}=\frac{A B}{B D}$
$\Rightarrow \quad \sqrt{3}=\frac{60}{\mathrm{BD}} \Rightarrow \mathrm{BD}=\frac{60}{\sqrt{3}}$
Also in right $\triangle \mathrm{CDB} ; \tan 30^{\circ}=\frac{\mathrm{CD}}{\mathrm{BD}}$

$$
\begin{aligned}
\Rightarrow \quad \frac{1}{\sqrt{3}} & =\frac{h}{\mathrm{BD}} \\
\Rightarrow \quad h & =\frac{\mathrm{BD}}{\sqrt{3}} \\
& =\frac{60}{\sqrt{3}} \times \frac{1}{\sqrt{3}} \\
& =\frac{60}{3}=20 \mathrm{~m}
\end{aligned}
$$

8. Let O be centre of the balloon of radius r and P the eye of the observer. Let PA, PB be tangents from P to the balloon. Then,

$$
\begin{aligned}
\angle \mathrm{APB} & =\alpha \\
\therefore \quad \angle \mathrm{APO}=\angle \mathrm{BPO} & =\frac{\alpha}{2}
\end{aligned}
$$

$$
\therefore \quad \mathrm{OL} \perp \mathrm{PX}, \angle \mathrm{OPL}=\beta
$$

$$
\therefore \quad \text { In } \triangle \mathrm{OAP}, \sin \frac{\alpha}{2}=\frac{\mathrm{OA}}{\mathrm{OP}}
$$

$$
\Rightarrow \quad \mathrm{OP}=r \operatorname{cosec} \frac{\alpha}{2}
$$

In $\triangle \mathrm{OPL}, \sin \beta=\frac{\mathrm{OL}}{\mathrm{OP}}$

$$
\Rightarrow \quad \mathrm{OL}=r \operatorname{cosec} \frac{\alpha}{2} \sin \beta
$$

WORKSHEET-71

$$
\text { 1. } \begin{aligned}
& \sin \theta & =\frac{30}{60}=\frac{1}{2} . \\
\Rightarrow & \theta & =30^{\circ} .
\end{aligned}
$$

2. Given:

$$
\mathrm{AB}: \mathrm{BC}=1: \frac{1}{\sqrt{3}}
$$

i.e., $\mathrm{AB}: \mathrm{BC}=\sqrt{3}: 1$

$$
\text { i.e., } \quad \frac{\mathrm{AB}}{\mathrm{BC}}=\frac{\sqrt{3}}{1}
$$

$$
\therefore \quad \tan \theta=\frac{\mathrm{AB}}{\mathrm{BC}}=\sqrt{3}=\tan 60^{\circ}
$$

$$
\Rightarrow \quad \theta=60^{\circ} .
$$

3. Wire is $A B$.

$$
\begin{aligned}
& \text { Wire is } \mathrm{AB} . \\
& \mathrm{CE}=\mathrm{BD}=14 \mathrm{~m} . \\
& \mathrm{AE}=\mathrm{AC}+\mathrm{CE} \\
& \Rightarrow \quad 20=\mathrm{AC}+14 \\
& \Rightarrow \mathrm{AC}=6 \mathrm{~m} \\
& \mathrm{In} \triangle \mathrm{ABC}, \angle \mathrm{C}=90^{\circ},
\end{aligned}
$$

4. False, because the tangent of the angle of elevation doubles not the angle of elevation.
5. BC is the multi-storeyed building with the foot B and the top C as the point of observation. AD is the building with bottom A and the top D. Draw DE || AB (see figure).
Given angles are $\angle \mathrm{XCD}=30^{\circ}$ and $\angle X C A=45^{\circ} . \angle C D E$ and $\angle X C D$ are alternate
interior angles.
$\therefore \quad \angle \mathrm{CDE}=\angle \mathrm{XCD}=30^{\circ}$.
Similarly, $\angle \mathrm{CAB}=\angle \mathrm{XCA}=45^{\circ}$

$$
\mathrm{BE}=\mathrm{AD}=8 \mathrm{~m}
$$

In right triangle ABC ,

$$
\begin{array}{rlrl}
\tan 45^{\circ} & =\frac{\mathrm{CE}+\mathrm{BE}}{\mathrm{AB}} \Rightarrow 1=\frac{\mathrm{CE}+8}{\mathrm{AB}} \\
\Rightarrow \quad & \mathrm{AB} & =\mathrm{CE}+8 \tag{i}
\end{array}
$$

Also, in right triangle DCE,

$$
\tan 30^{\circ}=\frac{\mathrm{CE}}{\mathrm{DE}} \Rightarrow \frac{1}{\sqrt{3}}=\frac{\mathrm{CE}}{\mathrm{AB}}
$$

$$
\begin{equation*}
(\because \mathrm{DE}=\mathrm{AB}) \tag{ii}
\end{equation*}
$$

$\Rightarrow \quad \mathrm{AB}=\sqrt{3} \mathrm{CE}$
From equations (i) and (ii), we get

$$
\begin{aligned}
(\sqrt{3}-1) \mathrm{CE} & =8 \\
\Rightarrow \quad \mathrm{CE} & =\frac{8}{\sqrt{3}-1} \times \frac{\sqrt{3}+1}{\sqrt{3}+1} \\
& =\frac{8 \times(1.73+1)}{3-1}=10.92 \mathrm{~m} .
\end{aligned}
$$

Substituting $C E=10.92$ in (i), we get

$$
\mathrm{AB}=10.92+8=18.92 \mathrm{~m}
$$

Further,

$$
\begin{aligned}
\mathrm{BC} & =\mathrm{BE}+\mathrm{CE}=8+10.92 \\
& =18.92 \mathrm{~m}
\end{aligned}
$$

Hence, the height of the multi-storyed building and the distance between the two buildings is 18.92 metres each.
6. Let $A B$ be the first tower with bottom A and CD be the second tower with bottom C .

$$
\begin{aligned}
\mathrm{BE} & =80 \mathrm{~m} \\
\mathrm{CD} & =160 \mathrm{~m} \\
\mathrm{AB} & =\mathrm{CE}
\end{aligned}
$$

$\because \mathrm{XD} \| \mathrm{BE}$ and BD is the transversal
$\therefore \angle \mathrm{DBE}=\angle \mathrm{XDB}=30^{\circ}$
In right triangle BDE ,

$$
\tan 30^{\circ}=\frac{\mathrm{DE}}{\mathrm{BE}}=\frac{\mathrm{CD}-\mathrm{CE}}{\mathrm{BE}}
$$

$$
\begin{aligned}
\Rightarrow \quad \frac{1}{\sqrt{3}} & =\frac{160-\mathrm{AB}}{80} \\
\Rightarrow \quad 160-\mathrm{AB} & =\frac{80}{\sqrt{3}} \\
\Rightarrow \quad \mathrm{AB} & =160-\frac{80}{\sqrt{3}}=160-\frac{80 \sqrt{3}}{3} \\
& =\frac{480-80 \sqrt{3}}{3} \\
& =\frac{480-80 \times 1.732}{3}=113.81
\end{aligned}
$$

Hence, the height of the first tower is 113.81 metres.
7. Let $h=\mathrm{AB}=$ height of tower
$x=\mathrm{PB}=$ distance of P from B .

$\angle \mathrm{APB}=60^{\circ} ; \angle \mathrm{AQM}=30^{\circ}$ are given as PBMQ is a rectangle

$$
\begin{array}{ll}
\Rightarrow & \mathrm{QP}=\mathrm{MB}=40 \mathrm{~m} \\
\therefore & \mathrm{AM}=\mathrm{AB}-\mathrm{MB}=(h-40) \mathrm{m}
\end{array}
$$

\therefore In right-angled $\triangle \mathrm{AMQ}$;

$$
\begin{align*}
& & \tan 30^{\circ} & =\frac{\mathrm{AM}}{\mathrm{QM}} \\
& \therefore & & \frac{1}{\sqrt{3}}
\end{align*}=\frac{h-40}{x} .
$$

Also in right-angled $\triangle \mathrm{ABP}$

$$
\begin{aligned}
\tan 60^{\circ} & =\frac{h}{x} \\
\Rightarrow \quad \sqrt{3} & =\frac{h}{x}
\end{aligned}
$$

From equation (i),

$$
\sqrt{3}=\frac{h}{\sqrt{3}(h-40)}
$$

$$
\begin{array}{rlrl}
\Rightarrow & 3(h-40) & =h \\
\Rightarrow & 3 h-120 & =h \\
\Rightarrow & 2 h & =120 \\
\Rightarrow & & h & =60 \mathrm{~m}
\end{array}
$$

\therefore From equation (i),

$$
\begin{aligned}
x & =\sqrt{3}(60-40) \\
\Rightarrow \quad & =20 \sqrt{3} \mathrm{~m} .
\end{aligned}
$$

8. (i) Case I. For children below the age of 5 years.
Length of slide = AC
\therefore In right-angled $\triangle A B C$;
$\frac{\mathrm{AB}}{\mathrm{AC}}=\sin 30^{\circ}$
$\begin{aligned} \Rightarrow \mathrm{AC} & =\frac{\mathrm{AB}}{\sin 30^{\circ}}=\frac{1.5}{\frac{1}{2}}{ }_{\mathrm{B}}^{\stackrel{\circ}{2}} \mathrm{C} \\ & =3 \mathrm{~m} .\end{aligned}$
Case II. For older children:
Length of slide = DF
\therefore In right-angled \triangle DEF

$$
\frac{\mathrm{DE}}{\mathrm{DF}}=\sin 60^{\circ}
$$

$$
\Rightarrow \mathrm{DF}=\mathrm{DE} \cdot \frac{2}{\sqrt{3}}=\frac{6}{\sqrt{3}}=2 \sqrt{3}
$$

(ii) Rationality.

CHAPTER TEST

1. From the adjoining figure, angle of depression of P is $\angle \mathrm{XOP}=\alpha$ and angle of depression of Q is $\angle \mathrm{XOQ}=90^{\circ}-\beta$.

2. $\tan 30^{\circ}=\frac{h}{20 \sqrt{3}}$

$$
\Rightarrow \quad h=20 \mathrm{~m} .
$$

3. Let the tower be $B C$ and the length of shadow be $A B$.

$$
\begin{aligned}
\tan 60^{\circ} & =\frac{\mathrm{BC}}{\mathrm{AB}} \\
\Rightarrow \quad \sqrt{3} & =\frac{20}{\mathrm{AB}} \\
\Rightarrow \quad \mathrm{AB} & =\frac{20}{\sqrt{3}} \mathrm{~m} \\
\Rightarrow \quad \mathrm{AB} & =\frac{20 \sqrt{3}}{3} \mathrm{~m}
\end{aligned}
$$

4. True, because the vertical tower, length of the shadow and the ray of the sun make a right angled isosceles triangle.
5. Let the ships be at A and B; and the tower be PQ.

$$
\begin{aligned}
\angle \mathrm{PAQ} & =\angle \mathrm{XPA} \\
& =30^{\circ}
\end{aligned}
$$

$$
\angle \mathrm{PBQ}=\angle \mathrm{XPB}=45^{\circ}
$$

In right $\triangle \mathrm{BPQ}$,

$$
\begin{array}{rrrr}
\because & \angle \mathrm{PBQ} & =45^{\circ}, & \therefore \angle \mathrm{BPQ}=45^{\circ} \\
\Rightarrow & \mathrm{BQ} & =\mathrm{PQ}=75 & \tag{i}\\
\hline
\end{array}
$$

In right $\triangle \mathrm{PAQ}$,

$$
\begin{aligned}
\tan 30^{\circ} & =\frac{\mathrm{PQ}}{\mathrm{AB}+\mathrm{BQ}} \\
\Rightarrow \quad \mathrm{AB}+75 & =75 \sqrt{3} \\
\Rightarrow \quad A B & =75(\sqrt{3}-1) \mathrm{m} .
\end{aligned}
$$

[Using (i)]
6. $8 \sqrt{3} \mathrm{~m}$

Hint: $\quad A^{\prime} C=A C$

$$
\begin{aligned}
& \cos 30^{\circ}=\frac{8}{\mathrm{AC}} \\
& \tan 30^{\circ}=\frac{\mathrm{BC}}{8} .
\end{aligned}
$$

7. Let the window be at P and height of the opposite house be h.
In right $\triangle \mathrm{APQ}$,

$$
\tan 45^{\circ}=\frac{60}{\mathrm{AQ}}
$$

$\Rightarrow \quad \mathrm{AQ}=60 \quad \Rightarrow \quad \mathrm{BP}=60$
In right $\triangle B C P$,

$$
\begin{aligned}
& \tan 60^{\circ} & =\frac{h-60}{60} \Rightarrow 60 \sqrt{3}=h-60 \\
\Rightarrow & h & =60+60 \sqrt{3}=60
\end{aligned}
$$

Thus, the required height is $60(1+\sqrt{3}) \mathrm{m}$.
8. AC is the length of each leg of the stool.

In $\triangle \mathrm{ABC}, \angle \mathrm{B}=60^{\circ}$

$\therefore \sin 60^{\circ}=\frac{\mathrm{AB}}{\mathrm{AC}}$
$\Rightarrow \quad \mathrm{AC}=\frac{1.8}{\left(\frac{\sqrt{3}}{2}\right)}=\frac{3.6}{\sqrt{3}}=\frac{3.6}{1.732}$
$\Rightarrow \quad \mathrm{AC}=2.0785 \mathrm{~m}$.
(ii) Trigonometric ratios
(iii) Independent

WORKSHEET-73

1. $\mathrm{PQ}=\mathrm{QB}$
$\therefore \frac{\mathrm{PQ}}{\mathrm{QB}}=1: 1$
\therefore Q should be mid-point of PB
$\Rightarrow \quad y=\frac{-3-5}{2}=-4$.
2. Any point on y-axis be $(0, y)$

$$
\left.\begin{array}{ll}
\therefore & \sqrt{(6)^{2}+(5-y)^{2}}
\end{array}=\sqrt{(0+4)^{2}+(3-y)^{2}}\right)
$$

\therefore Point is $(0,9)$.
3. Hint: Let the ratio is $k: 1$.

Now, use section formula.
4. Since diagonals of parallelogram bisect each other.
\therefore Mid-point of $A C=$ mid-point of BD

$$
\begin{array}{cc}
\text { i.e., } & \left(\frac{6+9}{2}, \frac{1+4}{2}\right)=\left(\frac{8+p}{2}, \frac{5}{2}\right) \\
\Rightarrow & \frac{15}{2}
\end{array}=\frac{8+p}{2} \Rightarrow p=7 .
$$

Given vertices are:
$\mathrm{A}(-3,0), \mathrm{B}(5,-2)$ and $\mathrm{C}(-8,5)$. We know that centroid G is $\left(\frac{x_{1}+x_{2}+x_{3}}{3}, \frac{y_{1}+y_{2}+y_{3}}{3}\right)$
\therefore Centroid $=\left(\frac{-3+5-8}{3}, \frac{0-2+5}{3}\right)=(-2,1)$.
5. Since P is equidistant from A and B

$$
\begin{array}{rlrl}
\therefore & \mathrm{AP} & =\mathrm{PB} \\
\Rightarrow & & \mathrm{AP}^{2} & =\mathrm{PB}^{2} \\
\Rightarrow & (2-5)^{2}+(4-k)^{2} & =(k-2)^{2}+(7-4)^{2} \\
\Rightarrow & 9+16+k^{2}-8 k & =k^{2}+4-4 k+9 \\
& & 4 k & =12 \\
\Rightarrow & & k & =3 .
\end{array}
$$

6. Let $\mathrm{A}(3,0), \mathrm{B}(6,4)$ and $\mathrm{C}(-1,3)$ are the vertices.
$\therefore \quad$ Consider $\mathrm{AB}=\sqrt{(6-3)^{2}+(4-0)^{2}}$

$$
=\sqrt{9+16}=\sqrt{25}=5
$$

$$
B C=\sqrt{(-1-6)^{2}+(3-4)^{2}}
$$

$$
=\sqrt{49+1}=\sqrt{50}=5 \sqrt{2}
$$

$$
\mathrm{AC}=\sqrt{(-1-3)^{2}+(3-0)^{2}}
$$

$$
=\sqrt{16+9}=\sqrt{25}=5
$$

Clearly

$$
\mathrm{AB}=\mathrm{AC}
$$

\Rightarrow Triangle is isosceles
also $\quad \mathrm{AB}^{2}+\mathrm{AC}^{2}=5^{2}+5^{2}=50$
and $\quad \mathrm{BC}^{2}=(5 \sqrt{2})^{2}=50$
$\Rightarrow \quad \mathrm{AB}^{2}+\mathrm{AC}^{2}=\mathrm{BC}^{2}$
\therefore By converse of Pythagoras theorem $\angle \mathrm{A}=$ 90°.
$\Rightarrow \triangle \mathrm{ABC}$ is right-angled isosceles triangle.
Hence proved.
7. Since $\mathrm{A}(x, y), \mathrm{B}(3,6)$ and $\mathrm{C}(-3,4)$ are collinear
8. As the given points are collinear, the area of the triangle formed by these points must be zero.
Let $(2,1) \equiv\left(x_{1}, y_{1}\right) ;(p,-1) \equiv\left(x_{2}, y_{2}\right) ;$ and $(-1,3) \equiv\left(x_{3}, y_{3}\right)$
Now, area of the triangle $=0$

$$
\begin{aligned}
& \Rightarrow \frac{1}{2}\left[x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+x_{3}\left(y_{1}-y_{2}\right)\right]=0 \\
& \Rightarrow \quad \frac{1}{2}[2(-1-3)+p(3-1)-1(1+1)]=0
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \quad \text { ar } \Delta \mathrm{ABC}=0 \\
& \Rightarrow x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+x_{3}\left(y_{1}-y_{2}\right)=0 \\
& \Rightarrow \quad x(6-4)+3(4-y)+(-3)(y-6)=0 \\
& \Rightarrow \quad 2 x+12-3 y-3 y+18=0 \\
& \Rightarrow \quad 2 x-6 y+30=0 \\
& x-3 y+15=0 \text {. }
\end{aligned}
$$

$$
\begin{array}{ll}
\Rightarrow & \frac{1}{2}(-8+2 p-2)=0 \\
\Rightarrow & 2 p=10 \Rightarrow p=5 .
\end{array}
$$

9. Hint: Proceed as done in solved example 5.

WORKSHEET-74

1. Area $=\left|\frac{1}{2}\{4(-6+5)+1(-5-5)-4(5+6)\}\right|$
$=\left|\frac{1}{2}(-4-10-44)\right|=|-29|$
$=29$ sq. units.
2. Condition of collinearity must be satisfied

$$
\begin{aligned}
\therefore & -5(p+2)+1(-2-1)+4(1-p) & =0 \\
\Rightarrow & -5 p-10-3+4-4 p & =0 \\
\Rightarrow & & p=-1 .
\end{aligned}
$$

3. 2 : 3

Hint: Use section formula.

4. True.

Hint: Any point P on x-axis will be of type $\mathrm{P}(x, 0)$
$\therefore \quad$ Let $\mathrm{A}(7,6), \mathrm{B}(-3,4)$
\therefore Use $\mathrm{PA}=\mathrm{PB}$.
5. $k=-8$

Hint: Using section formula

Coordinates of A

$$
=\left(\frac{1 \times 6+2 \times 3}{3}, \frac{-6 \times 1+2 \times 3}{3}\right)=(4,0)
$$

\therefore As it lies on $2 x+y+k=0$

$$
\begin{array}{lr}
\Rightarrow & 2 \times 4+0+k=0 \\
\therefore & k=-8 .
\end{array}
$$

6. Let O be the centre and P be the point on the circumference such that $\mathrm{O} \equiv(2 a, a-7)$ and $\mathrm{P} \equiv(1,-9)$.

$$
\begin{aligned}
\text { Radius } & =\mathrm{OP}=\frac{10 \sqrt{2}}{2} \\
& =5 \sqrt{2} \text { units }
\end{aligned}
$$

$$
\text { i.e., } \sqrt{(2 a-1)^{2}+(a-7+9)^{2}}=5 \sqrt{2}
$$

Squaring both sides, we get

$$
\begin{aligned}
& (2 a-1)^{2}+(a+2)^{2}=(5 \sqrt{2})^{2} \\
\Rightarrow & 4 a^{2}-4 a+1+a^{2}+4 a+4=50 \\
\Rightarrow & 5 a^{2}=45 \Rightarrow a= \pm 3
\end{aligned}
$$

Thus, $a= \pm 3$.
7. As point A is equidistant from the points B and C.

$$
\begin{array}{rlrl}
& \therefore & \mathrm{AB}=\mathrm{AC} \\
& \\
& \mathrm{~B}(3, p) \quad \mathrm{A}(0,2) & \\
& =\sqrt{(3-0)^{2}+(p-2)^{2}} \\
& =\sqrt{(p-0)^{2}+(5-2)^{2}} \\
\Rightarrow & 9+(p-2)^{2} & =p^{2}+9 \\
\Rightarrow & (p-2)^{2} & =p^{2} \\
\Rightarrow & & p^{2}+4-4 p & =p^{2} \\
\Rightarrow & & 4 p & =4 \Rightarrow p=1 \\
& \therefore & \mathrm{AB}=\sqrt{9+1}=\sqrt{10} \text { units }
\end{array}
$$

$$
\text { As } \quad \frac{\mathrm{PA}}{\mathrm{PQ}}=\frac{2}{5} \Rightarrow \frac{\mathrm{PQ}}{\mathrm{PA}}=\frac{5}{2}
$$

$$
\Rightarrow \quad \frac{\mathrm{PQ}}{\mathrm{PA}}-1=\frac{5}{2}-1
$$

$$
\Rightarrow \quad \frac{\mathrm{PQ}-\mathrm{PA}}{\mathrm{PA}}=\frac{5-2}{2} \Rightarrow \frac{\mathrm{AQ}}{\mathrm{PA}}=\frac{3}{2}
$$

$$
\therefore \quad \mathrm{PA}: \mathrm{AQ}=2: 3
$$

Let $\mathrm{A}(x, y)$ then using section formula.

$$
\begin{aligned}
x & =\frac{2 \times(-4)+3 \times 6}{2+3} \\
& =\frac{-8+18}{5}=\frac{10}{5}=2
\end{aligned}
$$

and

$$
\begin{aligned}
y & =\frac{2 \times(-1)+3 \times(-6)}{2+3} \\
& =\frac{-2-18}{5}=\frac{-20}{5}=-4
\end{aligned}
$$

\therefore Coordinates of A are $(2,-4)$
Now, as $P(6,-6)$ lies on $3 x+k(y+1)=0$

$$
\begin{aligned}
\Rightarrow & 3(6)+k(-6+1) & =0 \\
\Rightarrow & 18-5 k & =0 \\
\Rightarrow & k & =\frac{18}{5} .
\end{aligned}
$$

9. Hint: Show that all sides are equal.

WORKSHEET-7

1. Centroid is $\left(\frac{x_{1}+x_{2}+x_{3}}{3}, \frac{y_{1}+y_{2}+y_{3}}{3}\right)$

$$
=\left(\frac{-3+5-8}{3}, \frac{0-2+5}{3}\right)=(-2,1) .
$$

2. $\operatorname{ar}(\triangle \mathrm{ABC})$

$$
\begin{aligned}
& =\left|\frac{1}{2}\{2(1+2)-2(-2-3)+3(3-1)\}\right| \\
& =\left|\frac{1}{2}(6+10+6)\right|=11 \text { sq. units. }
\end{aligned}
$$

3. $\mathrm{AB}=\sqrt{(-2-2)^{2}+(3-4)^{2}}=\sqrt{16+1}$

$$
=\sqrt{17}
$$

4. Let $\mathrm{AB}=\sqrt{(7+2)^{2}+(10-5)^{2}}$

$$
=\sqrt{81+25}
$$

$$
=\sqrt{106}
$$

$$
\begin{aligned}
\mathrm{AC} & =\sqrt{(7-3)^{2}+(10+4)^{2}} \\
& =\sqrt{16+196}=\sqrt{212} \\
\mathrm{BC} & =\sqrt{(3+2)^{2}+(-4-5)^{2}} \\
& =\sqrt{25+81}=\sqrt{106}
\end{aligned}
$$

As $\mathrm{AB}=\mathrm{BC}$
$\Rightarrow \quad \triangle \mathrm{ABC}$ is isosceles
Also, $\quad \mathrm{AC}^{2}=212$

$$
\begin{aligned}
& \mathrm{AB}^{2}=106 \\
& \mathrm{BC}^{2}=106 \\
& \therefore \quad \mathrm{AC}^{2}= \\
& \mathrm{AB}^{2}+\mathrm{BC}^{2}
\end{aligned}
$$

$\Rightarrow \triangle \mathrm{ABC}$ is a right-angled triangle also.

5. True,

\because Pythagoras Theorem is satisfied.

$$
\begin{aligned}
\mathrm{AB}^{2} & =(-2)^{2}+(1-3)^{2} \\
& =4+4=8 \\
\mathrm{AC}^{2} & =(-1)^{2}+(4-3)^{2}=2 \\
\mathrm{BC}^{2} & =(1)^{2}+(3)^{2}=10
\end{aligned}
$$

$$
\therefore \quad \mathrm{AB}^{2}+\mathrm{AC}^{2}=\mathrm{BC}^{2}
$$

$$
\Rightarrow \quad \angle \mathrm{A}=90^{\circ}
$$

As $\quad \mathrm{AP}=\mathrm{PQ}=\mathrm{QB}$
$\Rightarrow \mathrm{AP}: \mathrm{PB}=1: 2$; let $\mathrm{P}(x, y)$
$\therefore \quad$ Using section formula

$$
x=\frac{2 \times 2+1 \times(-7)}{1+2}=\frac{4-7}{3}=-1
$$

and $\quad y=\frac{2 \times(-2)+1 \times(4)}{1+2}=\frac{-4+4}{3}=0$
\therefore Coordinates of P are $(-1,0)$ also then as Q is the mid-point of PB .
\therefore Coordinates of Q are given by:

$$
\mathrm{Q}\left(\frac{-1-7}{2}, \frac{0+4}{2}\right)
$$

$\{\because$ Using mid-point formula $\}$
$\Rightarrow Q(-4,2)$
\therefore Coordinates of P and Q are $(-1,0)$ and $(-4,2)$ respectively.
7. Let the coordinates of R be (x, y)

Then, $x=\frac{4 \times 2+3 \times 1}{4+3}$ and $y=\frac{4 \times 3+3 \times 2}{4+3}$
$\Rightarrow \quad x=\frac{11}{7}$ and $y=\frac{18}{7}$
Therefore, the coordinates of R are $\left(\frac{11}{7}, \frac{18}{7}\right)$.
8. 25 sq. units Hint: Join SQ. Find $\operatorname{ar}(\triangle \mathrm{PQS})$ and $\operatorname{ar}(\triangle \mathrm{RQS})$

$\therefore \quad$ Required area $=\operatorname{ar}(\triangle \mathrm{PQS})+\operatorname{ar}(\Delta \mathrm{RQS})$.
9. Each side of a square and rhombus are equal, but the diagonals of a square are equal and that of a rhombus may or may not equal.

$$
\begin{aligned}
\text { Side } \mathrm{PQ} & =\sqrt{(3-2)^{2}+(4+1)^{2}} \\
& =\sqrt{1+25}=\sqrt{26} \\
\text { Side } \mathrm{QR} & =\sqrt{(-2-3)^{2}+(3-4)^{2}} \\
& =\sqrt{25+1}=\sqrt{26} \\
\text { Side } \mathrm{RS} & =\sqrt{(-3+2)^{2}+(-2-3)^{2}} \\
& =\sqrt{1+25}=\sqrt{26} \\
\text { Side SP } & =\sqrt{(2+3)^{2}+(-1+2)^{2}} \\
& =\sqrt{25+1}=\sqrt{26} \\
\text { Diagonal PR } & =\sqrt{(-2-2)^{2}+(3+1)^{2}} \\
& =\sqrt{16+16}=4 \sqrt{2} \\
\text { Diagonal } \mathrm{QS} & =\sqrt{(-3-3)^{2}+(-2-4)^{2}} \\
& =\sqrt{36+36}=6 \sqrt{2}
\end{aligned}
$$

Clearly, the sides are equal but the diagonals are not equal. Hence, PQRS is a rhombus but not a square.

WORKSHEET-76

1. As given points are collinear.

$$
\begin{array}{rlrl}
\text { So, } a(b-1)+0(1-0)+1(0-b) & =0 \\
\Rightarrow & a b-a-b & =0 \\
\Rightarrow & a+b & =a b \\
\Rightarrow & \frac{1}{a}+\frac{1}{b} & =1 .
\end{array}
$$

2. ar of $\triangle \mathrm{ABC}=\frac{1}{2} \times 5 \times 3=7.5$. sq. unit.
3. Distance $=\sqrt{(\cos \theta-\sin \theta)^{2}+(\sin \theta+\cos \theta)^{2}}$

$$
=\sqrt{2\left(\sin ^{2} \theta+\cos ^{2} \theta\right)}=\sqrt{2} .
$$

4. Let $\mathrm{A} \equiv(x,-1)$ and $\mathrm{B} \equiv(3,2)$.

$$
\begin{aligned}
& & \mathrm{AB} & =5 \\
\Rightarrow & & \sqrt{(3-x)^{2}+(2+1)^{2}} & =5 \\
\Rightarrow & & 9-6 x+x^{2}+9 & =25 \text { (On squaring) } \\
\Rightarrow & & x^{2}-6 x-7 & =0 \\
\Rightarrow & & (x-7)(x+1) & =0 \Rightarrow x=7 \text { or }-1 .
\end{aligned}
$$

5. False.

$$
\begin{aligned}
\text { As mid-point of AC } & =\left(\frac{6+9}{2}, \frac{1+4}{2}\right) \\
& =\left(\frac{15}{2}, \frac{5}{2}\right)
\end{aligned}
$$

and mid-point of $\mathrm{BD}=\left(\frac{8+p}{2}, \frac{2+3}{2}\right)$
$\therefore \quad$ Mid-point of $\mathrm{AC}=$ Mid-point of BD

$$
\Rightarrow \quad \frac{15}{2}=\frac{8+p}{2} \Rightarrow p=7
$$

6. $\operatorname{ar}(\triangle \mathrm{ABD})$

$$
\begin{aligned}
& =\left|\frac{1}{2}\{-5(-5-5)-4(5-7)+4(7+5)\}\right| \\
& =\left|\frac{1}{2}(50+8+48)\right|=53 \text { sq. units. }
\end{aligned}
$$

$\operatorname{ar}(\triangle \mathrm{BCD})$

$$
\begin{aligned}
& =\left|\frac{1}{2}\{-4(-6-5)-1(5+5)+4(-5+6)\}\right| \\
& =\left|\frac{1}{2}(44-10+4)\right|=19 \text { sq. units. }
\end{aligned}
$$

Now, ar(quadrilateral ABCD)

$$
=\operatorname{ar}(\triangle \mathrm{ABD})+\operatorname{ar}(\triangle \mathrm{BCD})
$$

$=53$ sq. units +19 sq. units
$=72$ sq. units.
7. Let the points P, Q and R divide $A B$ into four equal parts $A P=P Q=Q R=R B$ as shown below in the adjoining figure.

Clearly, Q is the mid-point of AB

$$
\therefore \quad \mathrm{Q} \equiv\left(\frac{-2+2}{2}, \frac{2+8}{2}\right)
$$

i.e., $\quad \mathrm{Q} \equiv(0,5)$
P is the mid-point of $A Q$

$$
\begin{array}{ll}
\therefore & \mathrm{P} \equiv\left(\frac{-2+0}{2}, \frac{2+5}{2}\right) \\
\text { i.e., } & \mathrm{P} \equiv\left(-1, \frac{7}{2}\right)
\end{array}
$$

and R is the mid-point of $Q B$.

$$
\begin{array}{ll}
\therefore & R \equiv\left(\frac{0+2}{2}, \frac{5+8}{2}\right) \\
\text { i.e., } & R \equiv\left(1, \frac{13}{2}\right) .
\end{array}
$$

Hence, the required points are $P\left(-1, \frac{7}{2}\right)$, $Q(0,5)$ and $R\left(1, \frac{13}{2}\right)$.
8. We have $\mathrm{A}(4,6), \mathrm{B}(1,5)$ and $\mathrm{C}(7,2)$
$\therefore \quad$ Area of $\triangle \mathrm{ABC}$ is

$$
\begin{aligned}
& =\left\lvert\, \frac{1}{2}\left[x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)\right.\right. \\
& \left.\quad+x_{3}\left(y_{1}-y_{2}\right)\right] \mid \\
& =\left|\frac{1}{2}[4(5-2)+1(2-6)+7(6-5)]\right| \\
& =\left|\frac{1}{2}[12-4+7]\right| \\
& =\frac{15}{2} \text { sq. unit }
\end{aligned}
$$

As $\frac{\mathrm{AD}}{\mathrm{AB}}=\frac{1}{3} \Rightarrow \frac{\mathrm{AD}}{\mathrm{DB}}=\frac{1}{2}$
\therefore If coordinates of D are (x, y)

Then using section formula:

$$
\begin{aligned}
& x=\frac{2 \times 4+1 \times 1}{2+1}=\frac{9}{3}=3 \\
& y=\frac{2 \times 6+1 \times 5}{2+1}=\frac{12+5}{3}=\frac{17}{3}
\end{aligned}
$$

$\therefore \quad \mathrm{D}$ is $\left(3, \frac{17}{3}\right)$
Similarly, if (a, b) be coordinates of E .
then

$$
\begin{aligned}
& a=\frac{2 \times 4+1 \times 7}{2+1}=\frac{15}{3}=5 \\
& b=\frac{2 \times 6+1 \times 2}{2+1}=\frac{14}{3} .
\end{aligned}
$$

$\therefore \quad$ Coordinates of E are $\left(5, \frac{14}{3}\right)$.
$\therefore \quad$ area of $\triangle \mathrm{ADE}$

$$
\begin{aligned}
& =\left|\frac{1}{2}\left[4\left(\frac{17}{3}-\frac{14}{3}\right)+3\left(\frac{14}{3}-6\right)+5\left(6-\frac{17}{3}\right)\right]\right| \\
& =\left|\frac{1}{2}\left[4-4+\frac{5}{3}\right]\right|=\frac{5}{6} \text { sq. unit }
\end{aligned}
$$

$\therefore \quad \frac{\text { ar of } \triangle \mathrm{ABC}}{\text { ar } \triangle \mathrm{ADE}}=\frac{\frac{15}{2}}{\frac{5}{6}}=\frac{15}{2} \times \frac{6}{5}=9$
$\Rightarrow \quad$ ar of $\triangle \mathrm{ABC}=9$. $(\operatorname{ar} \triangle \mathrm{ADE})$.
9. Let $\mathrm{P}(x, y), \mathrm{A}(7,1), \mathrm{B}(3,5)$

As P is equidistant from A and B

$$
\begin{array}{rr}
\therefore & \mathrm{PA}=\mathrm{PB} \Rightarrow \mathrm{PA}^{2}=\mathrm{PB}^{2} \\
\Rightarrow & (7-x)^{2}+(1-y)^{2}=(3-x)^{2}+(5-y)^{2} \\
\Rightarrow & 49+x^{2}-14 x+1+y^{2}-2 y \\
& =9+x^{2}-6 x+25+y^{2}-10 y \\
\Rightarrow & -8 x+8 y=-16 \Rightarrow x-y=2 .
\end{array}
$$

OR

Let the required ratio be $k: 1$ and the point of division be (l, m) using section formula, we have

$$
l=\frac{2 k+1}{k+1} \text { and } m=\frac{7 k+3}{k+1}
$$

So, the point of division is $\left(\frac{2 k+1}{k+1}, \frac{7 k+3}{k+1}\right)$.
This point lies on the line $3 x+y-9=0$.

$$
\begin{aligned}
& \therefore \quad 3\left(\frac{2 k+1}{k+1}\right)+\frac{7 k+3}{k+1}-9=0 \\
& \Rightarrow \quad 6 k+3+7 k+3-9 k-9=0 \\
& \Rightarrow 4 k=3 \Rightarrow k=\frac{3}{4}
\end{aligned}
$$

Hence, the required ratio is $3: 4$.

WORKSHEET-77

1. Hint: Use condition of collinearity.
2. Hint: Any point on x-axis be $(x, 0)$.

Let ratio be $k: 1$
3. Hint: Origin is $(0,0)$.
4. Let A is $(-4,-6)$ and B is $(10,12)$

Let $\mathrm{P}(0, y)$ be any point on y-axis which lies on AB .
Let ratio be $k: 1$. Using section formula:

$$
\begin{gathered}
0=\frac{k(10)-4}{k+1} \\
\Rightarrow \quad 10 k=4 \Rightarrow k=\frac{4}{10}=\frac{2}{5}
\end{gathered}
$$

\therefore Ratio is $2: 5$
Also then $y=\frac{12 k-6}{k+1}$
$\Rightarrow \quad y=\frac{12\left(\frac{2}{5}\right)-6}{\frac{2}{5}+1}=\frac{24-30}{2+5}=\frac{-6}{7}$
\therefore The point P will be $\left(0, \frac{-6}{7}\right)$
5. Diagonals AC and BD cut each other at the mid-point P.

$$
\begin{aligned}
\therefore & \frac{3+x_{1}}{2}=2 ; & \frac{2+y_{1}}{2}=-5 \\
\Rightarrow & x_{1}=1 ; & y_{1}=-12 .
\end{aligned}
$$

Similarly, $\frac{x_{2}-1}{2}=2 ; \quad \frac{y_{2}+0}{2}=-5$
$\Rightarrow \quad x_{2}=5 ; \quad y_{2}=-10$.

Hence, two other vertices of the parallelogram are $(1,-12)$ and $(5,-10)$.
6. Area of quadrilateral $A B C D$

$$
\begin{aligned}
= & \operatorname{ar}(\Delta \mathrm{ABD})+\operatorname{ar}(\Delta \mathrm{BCD}) \\
= & \left|\frac{1}{2}\{1(-3-21)+7(21-1)+7(1+3)\}\right| \\
& \quad+\left|\frac{1}{2}\{7(2-21)+12(21+3)+7(-3-2)\}\right|
\end{aligned}
$$

$=\left|\frac{1}{2}(-24+140+28)\right|+\left|\frac{1}{2}(-133+288-35)\right|$
$=72+60=132$ sq. units.
7. $\left(\frac{1 \pm \sqrt{3}}{2}, \frac{7 \pm 5 \sqrt{3}}{2}\right)$

Hint:

$$
\begin{array}{ll}
\text { As } & \mathrm{AB}=\mathrm{BC}=\mathrm{AC} \\
\therefore & \mathrm{AB}=\mathrm{BC} \\
\Rightarrow & \mathrm{AB}^{2}=\mathrm{BC}^{2} \\
\Rightarrow & (x-3)^{2}+(y-4)^{2}=26 \tag{i}
\end{array}
$$

Similarly,

$$
\begin{equation*}
\mathrm{AC}=\mathrm{BC} \Rightarrow(x+2)^{2}+(y-3)^{2}=26 \tag{ii}
\end{equation*}
$$

Solve (i) and (ii).

$$
\text { 8. } \begin{array}{lcl}
& & \mathrm{PA}=\mathrm{PB} \\
\Rightarrow & \mathrm{PA}^{2}= & \mathrm{PB}^{2} \\
\Rightarrow & (x-3)^{2}+(y-6)^{2}=(x+3)^{2}+(y-4)^{2} \\
\Rightarrow & x^{2}+9-6 x+y^{2}+36-12 y \\
\Rightarrow & & \\
\Rightarrow & & =x^{2}+9+6 x+y^{2}+16-8 y \\
& & 3 x+y=5 .
\end{array}
$$

9. Coordinates of P are $\left(\frac{8-4}{2}, \frac{-6+6}{2}\right)$, i.e., $(2,0)$.

Coordinates of Q are $\left(\frac{-4-10}{2}, \frac{6-8}{2}\right)$ i.e., $(-7,-1)$.

Coordinates of R are $\left(\frac{8-10}{2}, \frac{-6-8}{2}\right)$, i.e., $(-1,-7)$.

Now, $\operatorname{ar}(\triangle \mathrm{ABC})$

$$
\begin{aligned}
& =\left|\frac{1}{2}\{8(6+8)-4(-8+6)-10(-6-6)\}\right| \\
& =\left|\frac{1}{2}(112+8+120)\right|=120 \text { sq. units. }
\end{aligned}
$$

and $\operatorname{ar}(\triangle \mathrm{PQR})$

$$
\begin{aligned}
& =\left|\frac{1}{2}\{2(-1+7)-7(-7-0)-1(0+1)\}\right| \\
& =\left|\frac{1}{2}(12+49-1)\right|=30 \text { sq. units. }
\end{aligned}
$$

So, $\quad \frac{\operatorname{ar}(\triangle \mathrm{PQR})}{\operatorname{ar}(\triangle \mathrm{ABC})}=\frac{30}{120}=\frac{1}{4}$
$\Rightarrow \quad \operatorname{ar}(\triangle \mathrm{PQR})=\frac{1}{4} \operatorname{ar}(\triangle \mathrm{ABC})$.
Hence proved.

WORKSHEET-78

1. Let (x, y) be required coordinates
\therefore using mid-point formula:

$$
\begin{aligned}
-2 & =\frac{x+2}{2} \text { and } 5=\frac{3+y}{2} \\
\Rightarrow \quad x & =-6 \quad \text { and } y=7
\end{aligned}
$$

2. Using condition of collinearity,

$$
\begin{array}{rlrl}
& & k[3 k-1]+3 k[1-2 k]+3[-k] & =0 \\
\Rightarrow & 3 k^{2}-k+3 k-6 k^{2}-3 k & =0
\end{array}
$$

$$
\begin{array}{lc}
\Rightarrow & -3 k^{2}-k=0 \\
\Rightarrow & -k(3 k+1)=0 \\
\Rightarrow & k=-\frac{1}{3} \text { or } 0
\end{array}
$$

3. Using mid-point formula:

$$
\begin{aligned}
1 & =\frac{2 a-2}{2} ; & ; 2 a+1 & =\frac{4+3 b}{2} \\
\Rightarrow \quad a & =2 & ; \quad b & =2 .
\end{aligned}
$$

4. Let the ratio is $k: 1$
$\therefore \quad$ Using section formula, the point is

$$
p\left(\frac{8 k+3}{k+1}, \frac{9 k-1}{k+1}\right)
$$

As it lies on

$$
x-y-2=0
$$

$\Rightarrow 8 k+3-9 k+1-2 k-2=0$
$\Rightarrow \quad-3 k+2=0$
$\Rightarrow \quad k=\frac{2}{3}$
\therefore Ratio is $2: 3$.
5. Let the coordinates of vertices of the triangle ABC are $\mathrm{A}\left(x_{1}, y_{1}\right), \mathrm{B}\left(x_{2}, y_{2}\right)$ and $\mathrm{C}\left(x_{3}, y_{3}\right)$.

Since, the point $(1,2)$ is the mid-point of $A B$.
$\therefore \quad \frac{x_{1}+x_{2}}{2}=1, \frac{y_{1}+y_{2}}{2}=2$
i.e., $\quad x_{1}+x_{2}=2, y_{1}+y_{2}=4$

Similarly, $x_{2}+x_{3}=0, y_{2}+y_{3}=-2$
and $\quad x_{3}+x_{1}=4, y_{3}+y_{1}=-2$
$\therefore \quad x_{1}+x_{2}+x_{3}=3, y_{1}+y_{2}+y_{3}=0 \ldots$ (iv)
Solving results (i), (ii), (iii) and (iv), we get $x_{1}=3, y_{1}=2, x_{2}=-1, y_{2}=2, x_{3}=1, y_{3}=$ -4 .
Hence the required vertices are $A(3,2)$, $B(-1,2)$ and $C(1,-4)$.
6. $(7,2)$ or $(1,0)$

Hint: $\operatorname{ar}(\triangle \mathrm{PAB})=10$
$\Rightarrow \operatorname{ar}(\triangle \mathrm{PAB})=+10$ or $\operatorname{ar}(\Delta \mathrm{PAB})=-10$
Let $\mathrm{P}(x, y) \therefore$ Use area of triangle
$=\frac{1}{2}\left[x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+x_{3}\left(y_{1}-y_{2}\right)\right]$.
7. The given points would be collinear, if the area of triangle formed by them as vertices is zero.

$$
\text { i.e., } \begin{array}{r}
\left\lvert\, \frac{1}{2}\{a(c+a-a-b)+b(a+b-b-c)\right. \\
+c(b+c-c-a)\} \mid=0
\end{array}
$$

Here, LHS

$$
\begin{aligned}
& =\left|\frac{1}{2}\{a(c-b)+b(a-c)+c(b-a)\}\right| \\
& =\left|\frac{1}{2}(a c-a b+a b-b c+b c-a c)\right|=|0| \\
& =0=\text { RHS. } \quad \text { Hence proved. }
\end{aligned}
$$

8. 24 sq. units

Hint: Area of rhombus $=\frac{1}{2} d_{1} \times d_{2}$
where $d_{1}, d_{2}=$ length of diagonals.
9. $\operatorname{ar}(\triangle \mathrm{ABC})=5$

$$
\begin{aligned}
& \Rightarrow\left|\frac{1}{2}\{k(6-1)-2(1-2 k)+3(2 k-6)\}\right|=5 \\
& \Rightarrow \\
& \Rightarrow\left|\frac{1}{2}(15 k-20)\right|=5 \Rightarrow\left|\frac{1}{2}(5 k-2+4 k+6 k-18)\right|=5 \\
& \left.\Rightarrow \quad \frac{15}{2} k-10 \right\rvert\,=5 \\
& \Rightarrow \quad \frac{15}{2} k=15 \text { or } 5 \Rightarrow k=2 \text { or } \frac{2}{3} .
\end{aligned}
$$

WORKSHEET-79
1.

$\therefore \mathrm{P}\left(\frac{2 \times 4+1}{3}, \frac{2 \times 6+3}{3}\right) \Rightarrow \mathrm{P}(3,5)$
2. Mid-point of $(6,8)$ and $(2,4)$ is $P(4,6)$.
\therefore If $\mathrm{A}(1,2)$, then

$$
\begin{aligned}
\mathrm{AP} & =\sqrt{(4-1)^{2}+(6-2)^{2}} \\
& =\sqrt{9+16}=5 \text { units. }
\end{aligned}
$$

3. 2 or -4

Hint: Use Pythagoras Theorem.
4.
$\begin{array}{ccc}\stackrel{\rightharpoonup}{P} \\ (0,1) & \vec{A} & \vec{Q} \\ (x, y) & (1,0)\end{array}$
$\therefore \quad \frac{\mathrm{PA}}{\mathrm{PQ}}=\frac{2}{3} \Rightarrow \mathrm{PA}: \mathrm{AQ}=2: 1$
$\therefore \quad$ Using section formula.

$$
x=\frac{2}{3} \quad ; y=\frac{1}{3} .
$$

$\therefore \quad$ Coordinates of A are $\left(\frac{2}{3}, \frac{1}{3}\right)$.
5. $\left(2-\frac{\sqrt{11}}{2}, \frac{5}{2}\right) ;\left(2+\frac{\sqrt{11}}{2}, \frac{5}{2}\right)$

Hint:

Let $\mathrm{AB}=\mathrm{AC}=3$.
Use distance formula.

6. Let the points of trisection be $\mathrm{P}\left(x_{1}, y_{1}\right)$ and $\mathrm{Q}\left(x_{2}, y_{2}\right)$ such that P is the mid-point of $\mathrm{A}(3,-2), \mathrm{Q}\left(x_{2}, y_{2}\right)$ and Q is the mid-point of $\mathrm{P}\left(x_{1}, y_{1}\right), \mathrm{B}(-3,-4)$.
i.e., $\quad \mathrm{AP}=\mathrm{PQ}=\mathrm{QB}$

$\Rightarrow \mathrm{AP}: \mathrm{PB}=1: 2$
Using section formula,

$$
\begin{array}{ll}
\therefore & x_{1}=\frac{-3+2 \times 3}{1+2}, y_{1}=\frac{-4+2 \times(-2)}{1+2} \\
\Rightarrow & x_{1}=1, y_{1}=-\frac{8}{3}
\end{array}
$$

Again $\mathrm{AQ}: \mathrm{QB}=2: 1$
$\therefore \quad x_{2}=\frac{2 \times(-3)+3}{2+1}, y_{2}=\frac{2 \times(-4)-2}{2+1}$
$\Rightarrow \quad x_{2}=-1, y_{2}=-\frac{10}{3}$.
Hence, the required points are $P\left(1,-\frac{8}{3}\right)$ and $Q\left(-1,-\frac{10}{3}\right)$.
7. $\mathrm{A}(1,10), \mathrm{B}(-7,-6), \mathrm{C}(9,2)$

Hint: $\quad x_{1}+x_{2}=2 \times(-3)=-6$

$$
x_{2}+x_{3}=2
$$

Adding,

Using same method,

$$
y_{1}+y_{2}+y_{3}=6
$$

and $y_{1}=10, y_{2}=-6, y_{3}=2$.
8. Area of $\triangle \mathrm{DBC}$

$$
\begin{aligned}
& =\left|\frac{1}{2}[x\{5-(-2)\}+(-3)(-2-3 x)+4(3 x-5)]\right| \\
& =\left|\frac{1}{2}(28 x-14)\right|=|(14 x-7)|
\end{aligned}
$$

Area of $\triangle A B C$

$$
\begin{aligned}
& =\left|\frac{1}{2}[6\{5-(-2)\}+(-3)(-2-3)+4(3-5)]\right| \\
& =\left|\frac{1}{2}(42+15-8)\right|=\frac{49}{2}
\end{aligned}
$$

$$
\begin{aligned}
& \text { From question } \\
& \frac{\operatorname{ar}(\triangle \mathrm{DBC})}{\operatorname{ar}(\triangle \mathrm{ABC})}=\frac{1}{2} \\
& \Rightarrow \quad \frac{|14 x-7|}{\frac{49}{2}}=\frac{1}{2} \\
& \Rightarrow \quad \frac{14 x-7}{\frac{49}{2}}=\frac{1}{2} \text { or } \frac{-14 x+7}{\frac{49}{2}}=\frac{1}{2} \\
& \Rightarrow \quad 8 x-4=7 \quad \text { or } \quad-8 x+4=7 \\
& \Rightarrow \quad x=\frac{11}{8} \text { or } \frac{-3}{8} \text {. }
\end{aligned}
$$

WORKSHEET-80

1. $\mathrm{A}(a+b, a-b), \mathrm{B}(2 a+b, 2 a-b)$, $\mathrm{C}(a-b, a+b), \mathrm{D}(x, y)$
Mid-point of $\mathrm{AC}=$ Mid-point of BD

$$
\begin{array}{ll}
\Rightarrow & x=-b \\
\Rightarrow & y=b .
\end{array}
$$

2. As the distance of a point from x-axis is equal to its y-coordinate, i.e., 3 .
3. $\left(-\frac{1}{3}, 0\right) ;\left(\frac{-5}{3}, 2\right)$

Hint:

Use $\mathrm{AP}: \mathrm{PB}=1: 2$
and $\mathrm{AQ}: \mathrm{QB}=2: 1$.
4. Let the third vertex be $C(x, y)$ of the given $\triangle A B C$. Using, $A C=A B$ and $B C=A B$, we have $x^{2}+y^{2}=12$ and

$$
(x-3)^{2}+(y-\sqrt{3})^{2}=12
$$

Solving these, we obtain
$x=0, y=2 \sqrt{3}$ or $x=3, y=-\sqrt{3}$.
Hence, the required vertex is $(0,2 \sqrt{3})$ or ($3,-\sqrt{3}$).
5. Let $A B C D$ be the given square such that $\mathrm{A}(3,4)$ and $\mathrm{C}(1,-1)$. Let $\mathrm{D}(a, b)$ be the unknown vertex.

Using $\mathrm{AD}^{2}=\mathrm{CD}^{2}$, we have

$$
\begin{array}{rlrl}
& (a-3)^{2}+(b-4)^{2} & =(a-1)^{2}+(b+1)^{2} \\
\Rightarrow & 4 a+10 b-23 & =0 \\
\Rightarrow & & b & =\frac{23-4 a}{10} \tag{i}
\end{array}
$$

Using $A D^{2}+C D^{2}=A C^{2}$, we have
$(a-3)^{2}+(b-4)^{2}+(a-1)^{2}+(b+1)^{2}$

$$
=(3-1)^{2}+(4+1)^{2}
$$

$$
\begin{align*}
& \Rightarrow a^{2}+b^{2}-6 a-8 b+9+16+a^{2}-2 a+b^{2} \\
& \quad \quad+2 b+1+1=4+25 \\
& \Rightarrow \quad a^{2}+b^{2}-4 a-3 b=1 \tag{ii}
\end{align*}
$$

Using equations (i) and (ii), we get

$$
\begin{array}{rlrl}
a^{2}+\left(\frac{23-4 a}{10}\right)^{2}-4 a-3\left(\frac{23-4 a}{10}\right) & =1 \\
\Rightarrow & & 116 a^{2}-464 a-261 & =0 \\
\Rightarrow & 4 a^{2}-16 a-9 & =0
\end{array}
$$

(Dividing by 29)
$\Rightarrow a=\frac{16 \pm \sqrt{256+4 \times 4 \times 9}}{2 \times 4}=\frac{9}{2}$ or $-\frac{1}{2}$
Substitute $a=\frac{9}{2}$ and $a=-\frac{1}{2}$ successively to get $b=\frac{1}{2}$ and $b=\frac{5}{2}$.
Hence, the required vertices are $\left(\frac{9}{2}, \frac{1}{2}\right)$ and $\left(-\frac{1}{2}, \frac{5}{2}\right)$.

OR

$(4,5),(2,3),(6,9)$

Hint:

$$
\begin{array}{lll}
& x_{1}+x_{2}=6 & y_{1}+y_{2}=8 \\
x_{2}+x_{3}=8 & y_{2}+y_{3}=12 \\
& x_{1}+x_{3}=10 & y_{1}+y_{3}=14
\end{array}
$$

Adding,

$$
\begin{aligned}
& 2\left(x_{1}+x_{2}+x_{3}\right)=24 \quad 2\left(y_{1}+y_{2}+y_{3}\right)=34 \\
& \Rightarrow \quad x_{1}+x_{2}+x_{3}=12 \quad \Rightarrow \quad y_{1}+y_{2}+y_{3}=17 \\
& \therefore \quad x_{1}=4 \quad \therefore \quad y_{1}=5 \\
& x_{2}=2 \quad y_{2}=3 \\
& x_{3}=6 ; \quad y_{3}=9 .
\end{aligned}
$$

6. Let $\mathrm{O}(x, y)$ be the circumcentre passing through $\mathrm{A}(3,0), \mathrm{B}(-1,-6)$ and $\mathrm{C}(4,-1)$.
Then $\quad \mathrm{OA}=\mathrm{OB}=\mathrm{OC}$
Taking $\mathrm{OA}=\mathrm{OB}$

$$
\begin{equation*}
\Rightarrow \quad \mathrm{OA}^{2}=\mathrm{OB}^{2} \tag{Squaring}
\end{equation*}
$$

$$
\begin{array}{lr}
\Rightarrow & (x-3)^{2}+(y-0)^{2}=(x+1)^{2}+(y+6)^{2} \\
\Rightarrow & x^{2}-6 x+9+y^{2}=x^{2}+2 x+1+y^{2}+12 y \\
\Rightarrow & 2 x+3 y+7=0
\end{array}
$$

and $\mathrm{OA}=\mathrm{OC} \Rightarrow \mathrm{OA}^{2}=\mathrm{OC}^{2} \quad$ (Squaring)
$\Rightarrow \quad(x-3)^{2}+y^{2}=(x-4)^{2}+(y+1)^{2}$
$\Rightarrow \quad x^{2}-6 x+9+y^{2}=x^{2}-8 x+16+y^{2}+2 y$
$\Rightarrow \quad x-y-4=0$
Solving equations (i) and (ii), we get

$$
x=1, y=-3 .
$$

Thus, the coordinates of the centre are $(1,-3)$
Now, radius $=\mathrm{OA}=\sqrt{(3-1)^{2}+(0+3)^{2}}$

$$
=\sqrt{4+9}=\sqrt{13} \text { units. }
$$

OR
The area of the triangle formed by the given points must be zero.

$$
\begin{aligned}
& \text { i.e., } \frac{1}{2}\{k(2 k-6+2 k)-(k-1)(6-2 k-2+2 k) \\
& -(4+k)(2-2 k-2 k)\} \mid=0 \\
& \Rightarrow k(4 k-6)-(k-1) \times 4-(4+k)(2-4 k)=0 \\
& \Rightarrow \quad 4 k^{2}-6 k-4 k+4-8+16 k-2 k+4 k^{2}=0 \\
& \Rightarrow \quad 8 k^{2}+4 k-4=0 \Rightarrow k^{2}+\frac{1}{2} k-\frac{1}{2}=0 \\
& \Rightarrow \quad k^{2}+\frac{1}{2} k+\frac{1}{16}-\frac{1}{16}-\frac{1}{2}=0 \\
& \Rightarrow \quad\left(k+\frac{1}{4}\right)^{2}-\left(\frac{3}{4}\right)^{2}=0 \\
& \Rightarrow \quad\left(k+\frac{1}{4}-\frac{3}{4}\right)\left(k+\frac{1}{4}+\frac{3}{4}\right)=0 \\
& \Rightarrow \quad k=-1 \text { or } \frac{1}{2} \text {. }
\end{aligned}
$$

7. $\mathrm{SP}=\sqrt{\left(a t^{2}-a\right)^{2}+(2 a t-0)^{2}}$

$$
=\sqrt{a^{2}\left(t^{2}-1\right)^{2}+4 a^{2} t^{2}}
$$

$$
=a \sqrt{t^{4}-2 t^{2}+1+4 t^{2}}=a \sqrt{t^{4}+2 t^{2}+1}
$$

$$
=a\left(\mathrm{t}^{2}+1\right)
$$

$$
\mathrm{SQ}=\sqrt{\left(\frac{a}{t^{2}}-a\right)^{2}+\left(\frac{-2 a}{t^{2}}-0\right)^{2}}
$$

$$
=\sqrt{\frac{a^{2}}{t^{4}}-\frac{2 a^{2}}{t^{2}}+a^{2}+\frac{4 a^{2}}{t^{2}}}
$$

$$
=a \sqrt{\frac{1}{t^{4}}+\frac{2}{t^{2}}+1}=a\left(\frac{1}{t^{2}}+1\right)
$$

Now, $\frac{1}{\mathrm{SP}}+\frac{1}{\mathrm{SQ}}=\frac{1}{a\left(t^{2}+1\right)}+\frac{1}{a\left(\frac{1}{t^{2}}+1\right)}$
$=\frac{1}{a}\left[\frac{1}{t^{2}+1}+\frac{t^{2}}{1+t^{2}}\right]$
$=\frac{1}{a}\left(\frac{1+t^{2}}{1+t^{2}}\right)=\frac{1}{a}$
which is independent of t.
8. As $\mathrm{P}(x, y)$ is mid-point of AB ,

$$
\begin{array}{ll}
{ }_{(3,4)}^{\mathrm{A}} & \mathrm{P} \\
& x=\frac{3+k}{2} \text { and } y=\frac{4+6}{2} \\
\text { i.e., } & x=\frac{3}{2}+\frac{k}{2} \text { and } y=5
\end{array}
$$

The value of x and y will satisfy $x+y-10=0$
$\therefore \frac{3}{2}+\frac{k}{2}+5-10=0 \Rightarrow \frac{k}{2}=5-\frac{3}{2}$
$\Rightarrow k=7$.

WORKSHEET-81

1. Let the coordinates of the third vertex C be (x, y).
$\therefore \quad \frac{3-2+x}{3}=\frac{5}{3}$ and $\frac{2+1+y}{3}=\frac{1}{3}$
i.e. $\quad x=4$ and $y=-2$
$\therefore \quad C \equiv(4,-2)$.
2. As $\quad \mathrm{BP}=\frac{\sqrt{3}}{2} \times(2 a)$

$$
=a \sqrt{3}
$$

and $\quad \mathrm{OP}=\frac{1}{2} \mathrm{OA}=a$

\therefore Coordinates of B are $(a, \sqrt{3} a)$.
3. Hint: Use $\mathrm{AB}=\mathrm{BC}=\mathrm{AC}$

$$
\text { Take } \mathrm{AB}^{2}=\mathrm{BC}^{2}
$$

$$
\text { and } \mathrm{BC}^{2}=A C^{2}
$$

4. Let the required point be (h, k).

Then
$h=\frac{3 \times(-4)+2 \times 6}{3+2}$ and $k=\frac{3 \times 5+2 \times 3}{3+2}$
i.e., $h=0$ and $k=\frac{21}{5}$.

So, the required point is $\left(0, \frac{21}{5}\right)$.

5. True.

Let $O(0,0), A(5,5)$ and $B(-5,5)$ be the three points.
$\therefore \quad \mathrm{OA}=5 \sqrt{2}=\mathrm{OB}$
and $\quad \mathrm{AB}^{2}=100=\mathrm{OA}^{2}+\mathrm{OB}^{2}$.
OR
True,
$\mathrm{AB}=\sqrt{(-4+6)^{2}+(6-10)^{2}}=\sqrt{20}=2 \sqrt{5}$
$\mathrm{BC}=\sqrt{(3+4)^{2}+(-8-6)^{2}}=\sqrt{245}=7 \sqrt{5}$
$\mathrm{AC}=\sqrt{(3+6)^{2}+(-8-10)^{2}}=\sqrt{405}=9 \sqrt{5}$
$\therefore \quad \mathrm{AB}+\mathrm{BC}=\mathrm{AC}$.
Also, $\frac{\mathrm{AB}}{\mathrm{AC}}=\frac{2}{9} \Rightarrow \mathrm{AB}=\frac{2}{9} \mathrm{AC}$.

Let coordinates of P are (x, y)
\therefore Using section formula:

$$
x=\frac{-4 \mathrm{~K}+3}{\mathrm{~K}+1} ; y=\frac{8 \mathrm{~K}-5}{\mathrm{~K}+1}
$$

As P lies on $x+y=0$

$$
\begin{array}{ll}
\Rightarrow & \frac{-4 \mathrm{~K}+3}{\mathrm{~K}+1}+\frac{8 \mathrm{~K}-5}{\mathrm{~K}+1} \\
\Rightarrow & =0 \\
4 k-2 & =0 \\
\Rightarrow & \mathrm{~K}=\frac{2}{4}=\frac{1}{2} .
\end{array}
$$

7.

Area of $\triangle \mathrm{ABC}$

$$
\begin{aligned}
= & \left\lvert\, \frac{1}{2}\left[x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+x_{3}\left(y_{1}-y_{2}\right)\right]\right. \\
\Rightarrow & 15=\frac{1}{2}[1(p-7)+4(7+3)+(-9)(-3-p)] \\
& 30=[p-7+40+27+9 p] \\
\Rightarrow & 30=[10 p+60] \Rightarrow 10 p=-30 \\
\Rightarrow & p=-3 .
\end{aligned}
$$

8. Let the coordinates of P be (x, y).

$$
\begin{array}{lc}
& \mathrm{PA}=\mathrm{PB} \\
\Rightarrow & \mathrm{PA}^{2}=\mathrm{PB}^{2} \quad \quad \text { (Squaring) } \\
\Rightarrow & (x-3)^{2}+(y-4)^{2}=(x-5)^{2}+(y+2)^{2} \\
\Rightarrow & x^{2}-6 x+9+y^{2}-8 y+16 \\
& =x^{2}-10 x+25+y^{2}+4 y+4 \\
\Rightarrow & 4 x-12 y-4=0 \\
\Rightarrow & x-3 y-1=0
\end{array}
$$

$$
\text { Area of } \triangle \mathrm{PAB}=10
$$

$$
\Rightarrow\left|\frac{1}{2}\{x(4+2)+3(-2-y)+5(y-4)\}\right|=10
$$

$$
6 x-6-3 y+5 y-20= \pm 20
$$

$$
6 x+2 y-26= \pm 20
$$

$$
\begin{equation*}
\Rightarrow \quad 3 x+y-3=0 \tag{ii}
\end{equation*}
$$

or $\quad 3 x+y-23=0$
Now, we have to solve equations (i) and (ii) as well as equations (i) and (iii).

Solving equations (i) and (ii), we get $x=1, y=0$
Solving equations (i) and (iii), we get $x=7, y=2$
Hence, the coordinates of Pare $(1,0)$ or (7, 2).

OR

$\because \mathrm{P}$ is mid-point of AB
$\therefore \mathrm{P} \equiv\left(\frac{1+3}{2}, \frac{5-7}{2}\right)$,
i.e., $\mathrm{P} \equiv(2,-1)$
$\because \mathrm{Q}$ is mid-point of BC

$\therefore \mathrm{Q} \equiv\left(\frac{3+0}{2}, \frac{-7+4}{2}\right)$, i.e., $\mathrm{Q} \equiv\left(\frac{3}{2},-\frac{3}{2}\right)$
$\because \mathrm{R}$ is mid-point of CA
$\therefore \mathrm{R} \equiv\left(\frac{0+1}{2}, \frac{4+5}{2}\right)$, i.e., $\mathrm{R} \equiv\left(\frac{1}{2}, \frac{9}{2}\right)$
Now, $\operatorname{ar}(\triangle \mathrm{PQR})$
$=\left|\frac{1}{2}\left\{2\left(-\frac{3}{2}-\frac{9}{2}\right)+\frac{3}{2}\left(\frac{9}{2}+1\right)+\frac{1}{2}\left(-1+\frac{3}{2}\right)\right\}\right|$
$=\left|\frac{1}{2}\left(-12+\frac{33}{4}+\frac{1}{4}\right)\right|=\left|\frac{-7}{4}\right|=\frac{7}{4}$
$\operatorname{ar}(\triangle \mathrm{ABC})$
$=\left|\frac{1}{2}\{1(-7-4)+3(4-5)+0(5+7)\}\right|$
$=\left|\frac{1}{2}(-11-3+0)\right|=|-7|=7$
Dividing equation (i) by equation (ii), we
have $\frac{\operatorname{ar}(\triangle \mathrm{PQR})}{\operatorname{ar}(\triangle \mathrm{ABC})}=\frac{\frac{7}{4}}{7}$
$\Rightarrow \quad \operatorname{ar}(\triangle \mathrm{PQR})=\frac{1}{4} \operatorname{ar}(\triangle \mathrm{ABC})$.
9. Since, A is on the x-axis, so its coordinates will be of the form $(x, 0)$. Similarly, the coordinates of B will be of the form $(0, y)$.

Since P is the mid-point of $A B$.

$$
\begin{array}{lrl}
\therefore & -2=\frac{x+0}{2} \text { and } 3=\frac{0+y}{2} \\
\therefore & x=-4 \text { and } y=6
\end{array}
$$

\therefore Coordinates of A are $(-4,0)$ and coordinates of B are $(0,6)$.
Now,

$$
\begin{aligned}
& \mathrm{PO}=\sqrt{(-2)^{2}+(3)^{2}}=\sqrt{4+9}=\sqrt{13} \\
& \mathrm{PA}=\sqrt{(-4+2)^{2}+(0-3)^{2}}=\sqrt{4+9}=\sqrt{13}
\end{aligned}
$$

Clearly, $\mathrm{PA}=\mathrm{PB}=\mathrm{PO}$
$\Rightarrow P$ is equidistant from A, B and the origin O.

WORKSHEET-82

1. $(-5,1),(1, p)$ and $(4,-2)$ are collinear.

$$
\begin{aligned}
& \Rightarrow-5(p+2)+1(-2-1)+4(1-p)=0 \\
& \Rightarrow-5 p-10-3+4-4 p=0 \Rightarrow 9 p=-9 \\
& \Rightarrow p=-1 .
\end{aligned}
$$

2. \quad Area $=\left|\frac{1}{2}\{1(4-6)-2(6-3)+0\}\right|$

$$
=\left|\frac{1}{2}(-2-6)\right|=4 \text { sq. units. }
$$

3. See Worksheet-78, Sol. 4.

4. False, because P does not lie on the line segment AB.
5. See Worksheet-80, Sol. 5.
6. As P is equidistant from A and B,

$$
\begin{gathered}
\mathrm{PA}=\mathrm{PB} \Rightarrow \mathrm{PA}^{2}=\mathrm{PB}^{2} \quad \text { (Squaring) } \\
\begin{aligned}
& \Rightarrow(a+b-x)^{2}+(b-a-y)^{2} \\
&=(a-b-x)^{2}+(a+b-y)^{2}
\end{aligned} \\
\Rightarrow(a+b-x)^{2}-(a-b-x)^{2} \\
= \\
\Rightarrow(a+b-y)^{2}-(b-a-y)^{2} \\
\Rightarrow \quad(a+b-x+a-b-x)(a+b-x-a+b+x) \\
= \\
(a+b-y+b-a-y) \\
\\
(a+b-y-b+a+y) \\
\Rightarrow \quad 2(a-x) \times 2 b=2(b-y) \times 2 a \\
\Rightarrow \quad a b-b x=a b-a y \Rightarrow b x=a y
\end{gathered}
$$

Hence proved.

OR

Let the third vertex be $C(x, y)$ of the given $\triangle A B C$ such that $\mathrm{A}(0,0)$ and B $(3, \sqrt{3})$.

Using

$$
\mathrm{AC}=\mathrm{AB}
$$

i.e.

$$
\mathrm{AC}^{2}=\mathrm{AB}^{2}
$$

(Squaring)
$\Rightarrow \quad x^{2}+y^{2}=9+3$
$\Rightarrow \quad x^{2}+y^{2}=12$
Also, using $\quad \mathrm{BC}=\mathrm{AC}$
i.e., $\quad \mathrm{BC}^{2}=\mathrm{AC}^{2}$
(Squaring)
$\Rightarrow \quad(x-3)^{2}+(y-\sqrt{3})^{2}=x^{2}+y^{2}$
$\Rightarrow x^{2}-6 x+9+y^{2}-2 \sqrt{3} y+3=x^{2}+y^{2}$
$\Rightarrow \quad 3 x+\sqrt{3} y-6=0$
Solving equations (i) and (ii), we obtain $x=0, y=2 \sqrt{3}$ or $x=3, y=-\sqrt{3}$
Hence, the third vertex is $(0,2 \sqrt{3})$ or $(3,-\sqrt{3})$.
7. $\frac{\mathrm{AD}}{\mathrm{AB}}=\frac{\mathrm{AE}}{\mathrm{AC}}=\frac{1}{4}$
$\Rightarrow \quad \frac{\mathrm{AB}}{\mathrm{AD}}=\frac{\mathrm{AC}}{\mathrm{AE}}=\frac{4}{1}$

$\Rightarrow \frac{\mathrm{AB}}{\mathrm{AD}}-1=\frac{\mathrm{AC}}{\mathrm{AE}}-1=\frac{4}{1}-1$
(Subtracting 1 throughout)
$\Rightarrow \frac{\mathrm{AB}-\mathrm{AD}}{\mathrm{AD}}=\frac{\mathrm{AC}-\mathrm{AE}}{\mathrm{AE}}=\frac{4-1}{1}$
$\Rightarrow \quad \frac{\mathrm{BD}}{\mathrm{AD}}=\frac{\mathrm{CE}}{\mathrm{AE}}=\frac{3}{1}$
$\Rightarrow \quad \mathrm{AD}: \mathrm{BD}=\mathrm{AE}: \mathrm{EC}=1: 3$
Let the coordinates of D and E be $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ respectively.
Let us use section formulae.

$$
x_{1}=\frac{1 \times 1+3 \times 4}{1+3}, y_{1}=\frac{1 \times 5+3 \times 6}{1+3}
$$

and $\quad x_{2}=\frac{1 \times 7+3 \times 4}{1+3}, y_{2}=\frac{1 \times 2+3 \times 6}{1+3}$
i.e., $\quad x_{1}=\frac{13}{4}, y_{1}=\frac{23}{4}$
and $\quad x_{2}=\frac{19}{4}, y_{2}=5$
So, the coordinates of D are $\left(\frac{13}{4}, \frac{23}{4}\right)$ and of E are $\left(\frac{19}{4}, 5\right)$.
$\operatorname{ar}(\triangle \mathrm{ADE})$
$=\left|\frac{1}{2}\left\{4\left(\frac{23}{4}-5\right)+\frac{13}{4}(5-6)+\frac{19}{4}\left(6-\frac{23}{4}\right)\right\}\right|$
$=\left|\frac{1}{2}\left\{4 \times \frac{3}{4}-\frac{13}{4}+\frac{19}{4} \times \frac{1}{4}\right\}\right|$
$=\frac{15}{32}$ sq. units.
Again, $\operatorname{ar}(\triangle \mathrm{ABC})$
$=\left|\frac{1}{2}\{4(5-2)+1(2-6)+7(6-5)\}\right|$
$=\left|\frac{1}{2}(12-4+7)\right|=\frac{15}{2}$ sq. units
$\therefore \operatorname{ar}(\triangle \mathrm{ADE}): \operatorname{ar}(\triangle \mathrm{ABC})=\frac{\frac{15}{32}}{\frac{15}{2}}=1: 16$.
8. (i) Distance covered by Ram = HT + TS

$$
\begin{aligned}
\therefore \quad \mathrm{HT} & =\sqrt{(9-1)^{2}+(-3-3)^{2}} \\
& =\sqrt{64+36}=10 \text { units } \\
\mathrm{TS} & =\sqrt{(-3-9)^{2}+(3-3)^{2}} \\
& =\sqrt{144}=12 \text { units }
\end{aligned}
$$

\therefore Distance covered by Ram

$$
=10+12=22 \text { units. }
$$

(ii) Distance covered by shyam = HS

$$
\begin{aligned}
& =\sqrt{(-3-1)^{2}+(3+3)^{2}} \\
& =\sqrt{16+36}=\sqrt{52}=2 \sqrt{13} \text { units }
\end{aligned}
$$

(iii) Concept of distance formula in coordinate geometry
(iv) Mutual respect and Diligence.

WORKSHEET - 83

1. As points A, B and C are collinear.

$$
\begin{array}{lr}
\therefore & \operatorname{ar}(\Delta \mathrm{ABC})=0 \\
\Rightarrow & \frac{1}{2}\left|x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+x_{3}\left(y_{1}-y_{2}\right)\right|=0 \\
\Rightarrow & |x(-4+5)+(-3)(-5-2)+7(2+4)|=0 \\
\Rightarrow & |x+21+42|=0 \\
\Rightarrow & x+63=0 \\
\Rightarrow & x=-63 .
\end{array}
$$

2. Let the coordinates of P and Q be $(x, 0)$ and $(0, y)$ respectively.
$\therefore \frac{x+0}{2}=3$ and $\frac{0+y}{2}=-7$
i.e., $\quad x=6$ and $y=-14$

Here, $\mathrm{P} \equiv(6,0)$ and $\mathrm{Q} \equiv(0,-14)$.
3. Let the required point be $\mathrm{P}(h, k)$.

Then $\quad \mathrm{PO}=\mathrm{PA}=\mathrm{PB}$
$\therefore \quad h^{2}+k^{2}=(h-2 x)^{2}+k^{2}$
and $h^{2}+k^{2}=h^{2}+(k-2 y)^{2}$
$\Rightarrow \quad h^{2}=h^{2}+4 x^{2}-4 x h$
and $\quad k^{2}=k^{2}-4 y k+4 y^{2}$
$\Rightarrow \quad h=x$ and $k=y$
$\therefore \mathrm{P}$ is (x, y).
4. False, because $A B \neq C D$ and $B C \neq A D$ as

$$
\begin{aligned}
& \mathrm{AB}=\sqrt{2^{2}+1^{2}}=\sqrt{5} ; \\
& \mathrm{BC}=\sqrt{(-1)^{2}+(-10)^{2}}=\sqrt{101} ;
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{CD}=\sqrt{(-8)^{2}+11^{2}}=\sqrt{185} \\
& \mathrm{AD}=\sqrt{(-7)^{2}+2^{2}}=\sqrt{53}
\end{aligned}
$$

5. Let radius $=r$

$$
\begin{array}{lc}
\therefore & \mathrm{OB}=\mathrm{OA} \\
\Rightarrow & \mathrm{OB}^{2}=\mathrm{OA}^{2} \\
\Rightarrow & (2-5)^{2}+(-3 y-7)^{2}=(2+1)^{2}+(-3 y-y)^{2}
\end{array}
$$

$$
\Rightarrow \quad 9+9 y^{2}+49+42 y=9+16 y^{2}
$$

$$
\Rightarrow \quad 7 y^{2}-42 y-49=0
$$

$$
\Rightarrow \quad y^{2}-6 y-7=0
$$

$$
\Rightarrow \quad y^{2}-7 y+y-7=0
$$

$$
\Rightarrow \quad y(y-7)+1(y-7)=0
$$

$$
\Rightarrow \quad(y-7)(y+1)=0
$$

$$
\Rightarrow \quad y=7 \text { or }-1
$$

$$
\therefore \quad r=\mathrm{OB}=\sqrt{(2-5)^{2}+(-3 y-7)^{2}}
$$

$$
=\sqrt{9+16}=\sqrt{25}=5 \quad(\text { if } y=-1)
$$

or

$$
r=\mathrm{OB}=\sqrt{(2-5)^{2}+(-28)^{2}}=\sqrt{9+784}
$$

$$
=\sqrt{793}
$$

6. Let the required ratio be $\lambda: 1$.

Here, we will use section formula as given below.

$$
\begin{aligned}
& x=\frac{m x_{2}+n x_{1}}{m+n} \text { and } y=\frac{m y_{2}+n y_{1}}{m+n} \\
& (-5,-4) \quad \frac{\lambda: 1}{(-3, k) \quad(-2,3)}
\end{aligned}
$$

In this question,

$$
-3=\frac{-2 \lambda-5}{\lambda+1} \text { and } k=\frac{3 \lambda-4}{\lambda+1}
$$

$$
\begin{aligned}
& \Rightarrow \quad-3 \lambda-3=-2 \lambda-5 \text { and } k=\frac{3 \lambda-4}{\lambda+1} \\
& \Rightarrow \quad \lambda=2 \text { and i.e., } k=\frac{3 \times 2-4}{2+1} \\
& \Rightarrow \quad \lambda: 1=2: 1 \text { and } k=\frac{2}{3}
\end{aligned}
$$

Hence, the ratio is $2: 1$ and $k=\frac{2}{3}$.
7. First, we find the length of each side of quadrilateral ABCD .

$$
\begin{aligned}
\mathrm{AB} & =\sqrt{(1-5)^{2}+(5-6)^{2}}=\sqrt{(-4)^{2}+(-1)^{2}} \\
& =\sqrt{16+1}=\sqrt{17} \\
\mathrm{BC} & =\sqrt{(2-1)^{2}+(1-5)^{2}}=\sqrt{1^{2}+(-4)^{2}} \\
& =\sqrt{1+16}=\sqrt{17} \\
\mathrm{CD} & =\sqrt{(6-2)^{2}+(2-1)^{2}}=\sqrt{4^{2}+1^{2}} \\
& =\sqrt{16+1}=\sqrt{17} \\
\mathrm{AD} & =\sqrt{(6-5)^{2}+(2-6)^{2}}=\sqrt{1^{2}+(-4)^{2}} \\
& =\sqrt{1+16}=\sqrt{17}
\end{aligned}
$$

Clearly, $\mathrm{AB}=\mathrm{BC}=\mathrm{CD}=\mathrm{AD}$
All the sides of quadrilateral $A B C D$ are equal.
Therefore, ABCD is a rhombus. It may be a square if diagonals are equal. To confirm it, we have to find out the lengths of diagonal AC and BD.

$$
\begin{aligned}
\mathrm{AC} & =\sqrt{(2-5)^{2}+(1-6)^{2}}=\sqrt{(-3)^{2}+(-5)^{2}} \\
& =\sqrt{9+25}=\sqrt{34} \\
\mathrm{BD} & =\sqrt{(6-1)^{2}+(2-5)^{2}} \\
& =\sqrt{5^{2}+(-3)^{2}}=\sqrt{25+9}=\sqrt{34}
\end{aligned}
$$

Clearly, $\mathrm{AC}=\mathrm{BD}$.
Hence, quadrilateral ABCD is a square.
8. To find area of quadrilateral $A B C D$, we divide it into two parts by either diagonal (see graph).

Area of a triangle ABC

$$
\begin{aligned}
& =\frac{1}{2}\left|x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+x_{3}\left(y_{1}-y_{2}\right)\right| \\
& =\frac{1}{2}|-5(-5+6)-4(-6-7)-1(7+5)| \\
& =\frac{1}{2}|-5+52-1|=\frac{1}{2} \times 35=\frac{35}{2} \text { sq. units } \\
& \begin{aligned}
\operatorname{ar}(\Delta \mathrm{ACD}) & =\frac{1}{2}|-5(-6-5)-1(5-7)+4(7+6)| \\
& =\frac{1}{2}|55+2+5|=\frac{1}{2} \times 109 \\
& =\frac{109}{2} \text { sq. units }
\end{aligned}
\end{aligned}
$$

Now, ar (quadrilateral ABCD)

$$
\begin{aligned}
& =\operatorname{ar}(\triangle \mathrm{ABC})+\operatorname{ar}(\triangle \mathrm{ACD}) \\
& =\frac{35}{2}+\frac{109}{2}=\frac{144}{2} \\
& =72 \text { square units. }
\end{aligned}
$$

Alternative Method:

ar (quadrilateral ABCD)
$=\left\lvert\, \frac{1}{2}\left[\left(x_{1}-x_{3}\right)\left(y_{2}-y_{4}\right)+\left(x_{2}-x_{4}\right)\left(y_{3}-y_{1}\right) \mid\right.\right.$
$=\left\lvert\, \frac{1}{2}[(-5+1)(-5-5)+(-4-4)(-6-7) \mid\right.$
$=\left|\frac{1}{2}[40+104]\right|=72$ sq. units.

CHAPTER TEST

1. Let the point of division be (x, y)

$$
\begin{aligned}
& x=\frac{1 \times 3+2 \times 7}{1+2}, y=\frac{1 \times 4+2(-6)}{1+2} \\
\Rightarrow & x=\frac{17}{3}, y=\frac{-8}{3} \\
\Rightarrow & \left(\frac{17}{3},-\frac{8}{3}\right) \text { lies in the } \mathrm{IV}^{\text {th }} \text { quadrant. }
\end{aligned}
$$

2. Mid-point of hypotenuse $A B$ is equidistant from the vertices A, B and O.
Therefore, the required point is

$$
\left(\frac{0+2 x}{2}, \frac{2 y+0}{2}\right) \text {, i.e., }(x, y) .
$$

3. Let $\mathrm{A}(8,1), \mathrm{B}(3,-2 k)$ and $\mathrm{C}(k,-5)$ are collinear.

$$
\begin{aligned}
& \Rightarrow \quad \text { Area } \triangle \mathrm{ABC}=0 \\
& \Rightarrow \mid x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right) \\
& +x_{3}\left(y_{1}-y_{2}\right) \mid=0 \\
& \Rightarrow \mid 8(-2 k+5)+3(-5-1) \\
& +k(1+2 k) \mid=0 \\
& \Rightarrow \quad\left|-16 k+40-18+k+2 k^{2}\right|=0 \\
& \Rightarrow \quad\left|2 k^{2}-15 k+22\right|=0 \\
& \Rightarrow \quad 2 k^{2}-15 k+22=0 \\
& \Rightarrow \quad 2 k^{2}-11 k-4 k+22=0 \\
& \Rightarrow \quad k(2 k-11)-2(2 k-11)=0 \\
& \Rightarrow \quad(k-2)(2 k-11)=0 \\
& \Rightarrow \quad k-2=0 \text { or } 2 k-11=0 \\
& \Rightarrow \quad k=2 \text { or } k=\frac{11}{2} \text {. }
\end{aligned}
$$

4. False, because Q lies outside the circle as OQ > radius of circle.
5.

$$
\begin{aligned}
& \underset{(3 a+1,-3)}{A} \quad \begin{array}{ccc}
(9 a-2,-b) & (8 a, 5)
\end{array} \\
& 9 a-2=\frac{3 \times 8 a+1 \times(3 a+1)}{3+1} \\
& \text { and } \quad-b=\frac{3 \times 5+1(-3)}{3+1} \\
& \Rightarrow \quad 36 a-8=24 a+3 a+1 \\
& \text { and } \quad-3 b-b=15-3 \\
& \Rightarrow \quad 9 a=9 \text { and } 4 b=-12
\end{aligned}
$$

Thus, $a=1$ and $b=-3$.
6. As points $A(-1,-4), B(b, c), C(5,-1)$ are collinear.

$$
\begin{array}{rlrl}
\therefore & -1(c+1)+b(-1+4)+5(-4-c) & =0 \\
\Rightarrow & -c-1-b+4 b-20-5 c & =0 \\
\Rightarrow & & 3 b-6 c & =21 \\
\Rightarrow & & b-2 c & =7 . . \tag{i}
\end{array}
$$

$$
\begin{array}{lrl}
\Rightarrow & c & =4-2 b \\
\text { Using it in }(i), & b-2(4-2 b) & =7 \\
\Rightarrow & b-8+4 b & =7 \\
\Rightarrow & 5 b & =15 \\
\Rightarrow & b & =3 \\
\text { and } & c & =4-6 \\
\Rightarrow & c & =-2
\end{array}
$$

7. Since, BC lies on y-axis: Coordinates of B will be of type $(0, y)$.

Coordinate of C is $(0,-3)$ given
Since, mid-point BC is origin
$\therefore \frac{y-3}{2}=0 \Rightarrow y=3$
\Rightarrow Coordinates of B will be $(0,3)$
$\therefore \quad B C=\sqrt{(0-0)^{2}+(-3-3)^{2}}=\sqrt{36}=6$
Clearly, Point A will lies on x-axis.
Let coordinates of A be $(x, 0)$.

$$
\therefore \quad \mathrm{AB}=\mathrm{BC}
$$

$\Rightarrow \quad \sqrt{x^{2}+9}=\sqrt{36}$
$\Rightarrow \quad x^{2}+9=36 \quad \Rightarrow \quad x^{2}=27$
$\Rightarrow \quad x= \pm 3 \sqrt{3}$
\therefore Two possible coordinates of A are $(3 \sqrt{3}, 0)$ or $(-3 \sqrt{3}, 0)$.
Moreover as ABCD is a rhombus.
\therefore If A is $(3 \sqrt{3}, 0)$, then D can be taken as $(-3 \sqrt{3}, 0)$
and if A is $(-3 \sqrt{3}, 0)$, then D can be taken as $(3 \sqrt{3}, 0)$.
8. (i) Deepa is correct.

As $\mathrm{A}(3,4), \mathrm{B}(6,7), \mathrm{C}(9,4), \mathrm{D}(6,1)$

$$
\left.\begin{array}{rl}
\therefore \mathrm{AB} & =\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \\
& =\sqrt{(6-3)^{2}+(7-4)^{2}}=\sqrt{9+9}=3 \sqrt{2} \\
\mathrm{BC} & =\sqrt{(9-6)^{2}+(4-7)^{2}}=3 \sqrt{2} \\
\mathrm{CD} & =\sqrt{(6-9)^{2}+(1-4)^{2}}=3 \sqrt{2}
\end{array}\right\} \begin{aligned}
\text { and } \quad \mathrm{DA} & =\sqrt{(3-6)^{2}+(4-1)^{2}}=3 \sqrt{2} \\
\text { Hence, } \mathrm{AB} & =\mathrm{BC}=\mathrm{CD}=\mathrm{DA}
\end{aligned} \quad \begin{aligned}
\text { Also, } \mathrm{AC} & =\sqrt{(9-3)^{2}+(4-4)^{2}} \\
& =\sqrt{36+0}=6 \\
\mathrm{BD} & =\sqrt{(6-6)^{2}+(1-7)^{2}}=\sqrt{36}=6 \\
\mathrm{AC} & =\mathrm{BD}
\end{aligned}
$$

\Rightarrow Four sides and diagonals are respectively equal.
$\therefore \mathrm{ABCD}$ is a square.
(ii) Distance formula in coordinate geometry is used.
(iii) Rationality being able to form judgement.

WORKSHEET - 84

1. Here, $\triangle \mathrm{ABC} \sim \Delta \mathrm{RQP}$
$\Rightarrow \angle \mathrm{A} \leftrightarrow \angle \mathrm{R}, \angle \mathrm{B} \leftrightarrow \angle \mathrm{Q}, \angle \mathrm{C} \leftrightarrow \angle \mathrm{P}$
$\therefore \angle \mathrm{P}=\angle \mathrm{C}=180^{\circ}-80^{\circ}-60^{\circ}=40^{\circ}$.
2. $\mathrm{DC}^{2}=\mathrm{BC}^{2}+\mathrm{BD}^{2}=\mathrm{BC}^{2}+\left(\frac{\mathrm{AB}}{2}\right)^{2}$

$$
\begin{aligned}
& =\mathrm{BC}^{2}+\frac{1}{4}\left(\mathrm{AC}^{2}-\mathrm{BC}^{2}\right) \\
& =9+\frac{1}{4}(25-9)=9+4=13
\end{aligned}
$$

$\Rightarrow \quad \mathrm{DC}=\sqrt{13} \mathrm{~cm}$.
3. $x=8 \mathrm{~cm}$

Hint: As DE || BC

$$
\begin{aligned}
& \therefore \quad \frac{\mathrm{AD}}{\mathrm{DB}}=\frac{\mathrm{AE}}{\mathrm{EC}} \\
& \Rightarrow \\
& \Rightarrow
\end{aligned} \frac{2 x-1}{x-3}=\frac{2 x+5}{x-1 .} .
$$

4. $\mathrm{DE} \| \mathrm{BC}$ and DB is transversal

$$
\Rightarrow \quad \angle \mathrm{EDA}=\angle \mathrm{ABC}
$$

(Alternate interior angles)
Similarly, $\angle \mathrm{AED}=\angle \mathrm{ACB}$
Consequently,

$$
\begin{array}{rlrl}
& & \Delta \mathrm{ADE} & \sim \angle \mathrm{ACB}(\mathrm{AA} \text { similarity }) \\
& \therefore & \frac{\mathrm{AD}^{2}}{\mathrm{AB}^{2}} & =\frac{\operatorname{ar}(\triangle \mathrm{ADE})}{\operatorname{ar}(\triangle \mathrm{ABC})} \\
\Rightarrow & \frac{\mathrm{AD}^{2}}{9 \mathrm{AD}^{2}} & =\frac{\operatorname{ar}(\triangle \mathrm{ADE})}{153} \\
\Rightarrow & \operatorname{ar}(\triangle \mathrm{ADE}) & =17 \mathrm{~cm}^{2} .
\end{array}
$$

5. No.

Here, $\frac{D P}{P E}=\frac{5}{10}=\frac{1}{2}$
And

$$
\frac{\mathrm{DQ}}{\mathrm{QF}}=\frac{6}{18}=\frac{1}{3}
$$

$\because \quad \frac{\mathrm{DP}}{\mathrm{PE}} \neq \frac{\mathrm{DQ}}{\mathrm{QF}}$

Therefore, PQ is not parallel to EF.
6.

Let each side of $\triangle \mathrm{ABC}=x$

$$
\begin{array}{rlrl}
\therefore & \mathrm{AD}^{2} & =\mathrm{AB}^{2}-\mathrm{BD}^{2} \\
& & =x^{2}-\left(\frac{x}{2}\right)^{2}=x^{2}-\frac{x^{2}}{4} \\
& =\frac{4 x^{2}-x^{2}}{4}=\frac{3 x^{2}}{4} . \\
\therefore & \mathrm{AD} & =\frac{\sqrt{3}}{2} x
\end{array}
$$

As $\triangle \mathrm{ABC}$ and $\triangle \mathrm{ADE}$ are both equilateral Δ
$\Rightarrow \quad \triangle \mathrm{ABC} \sim \triangle \mathrm{ADE}$

$$
\begin{aligned}
\Rightarrow \frac{\operatorname{ar}(\triangle \mathrm{ABC})}{\operatorname{ar}(\triangle \mathrm{ADE})} & =\frac{\mathrm{AB}^{2}}{\mathrm{AD}^{2}}=\frac{x^{2}}{\left(\frac{\sqrt{3}}{2} x\right)^{2}} \\
& =\frac{x^{2}}{\frac{3}{4} x^{2}}=\frac{4}{3} .
\end{aligned}
$$

7. $\mathrm{As} \mathrm{AB}=\mathrm{BC}=\mathrm{AC}$
$\therefore \mathrm{AD} \perp \mathrm{BC} \Rightarrow \mathrm{BD}=\frac{1}{2} \mathrm{BC}$
\therefore Using Pythagoras Theorem

$$
\begin{aligned}
\therefore \quad \mathrm{AB} & =\mathrm{AD}^{2}+\mathrm{BD}^{2} \\
\Rightarrow \quad \mathrm{AD}^{2} & =\mathrm{AB}^{2}-\left(\frac{1}{2} \mathrm{BC}\right)^{2} \\
& =\frac{3 \mathrm{AB}^{2}}{4} \\
\Rightarrow \quad 4 \mathrm{AD}^{2} & =3 \mathrm{AB}^{2} . \quad \text { Hence proved }
\end{aligned}
$$

OR

Let ABCD be a rhombus
Since, diagonals of a rhombus bisect each other at right angles,

$$
\begin{aligned}
\therefore \quad \mathrm{AO} & =\mathrm{CO}, \mathrm{BO}=\mathrm{DO} \\
\angle \mathrm{AOD} & =\angle \mathrm{DOC} \\
=\angle \mathrm{COB} & =\angle \mathrm{BOA}=90^{\circ}
\end{aligned}
$$

Now, in $\triangle A O D$

$$
\begin{equation*}
\mathrm{AD}^{2}=\mathrm{AO}^{2}+\mathrm{OD}^{2} \tag{i}
\end{equation*}
$$

Similarly, $\mathrm{DC}^{2}=\mathrm{DO}^{2}+\mathrm{OC}^{2}$

$$
\begin{equation*}
\mathrm{CB}^{2}=\mathrm{CO}^{2}+\mathrm{BO}^{2} \tag{ii}
\end{equation*}
$$

and $\quad \mathrm{BA}^{2}=\mathrm{BO}^{2}+\mathrm{AO}^{2}$
Adding equations (i), (ii), (iii) and (iv), we have

$$
\begin{aligned}
\mathrm{AD}^{2}+\mathrm{DC}^{2} & +\mathrm{CB}^{2}+\mathrm{BA}^{2} \\
& =2\left(\mathrm{DO}^{2}+\mathrm{CO}^{2}+\mathrm{BO}^{2}+\mathrm{AO}^{2}\right) \\
& =2\left(\frac{\mathrm{BD}^{2}}{4}+\frac{\mathrm{AC}^{2}}{4}+\frac{\mathrm{BD}^{2}}{4}+\frac{\mathrm{CA}^{2}}{4}\right) \\
& =\mathrm{BD}^{2}+\mathrm{CA}^{2} . \quad \text { Hence proved }
\end{aligned}
$$

8. Hint: $\mathrm{BD}=\mathrm{DE}=\mathrm{EC}=\frac{1}{3} \mathrm{BC}$

Use Pythagoras Theorem.
9. Statement: In a triangle, if square of the largest side is equal to the sum of the squares of the other two sides, then the angle opposite to the largest side is a right angle.
Proof: We are given a triangle ABC with

$$
\begin{equation*}
A^{\prime} C^{\prime 2}=A^{\prime} B^{\prime 2}+B^{\prime} C^{\prime 2} \tag{i}
\end{equation*}
$$

We have to prove that $\angle \mathrm{B}^{\prime}=90^{\circ}$
Let us construct a $\triangle \mathrm{PQR}$ with $\angle \mathrm{Q}=90^{\circ}$ such that

$$
\begin{equation*}
\mathrm{PQ}=\mathrm{A}^{\prime} \mathrm{B}^{\prime} \text { and } \mathrm{QR}=\mathrm{B}^{\prime} \mathrm{C}^{\prime} \tag{ii}
\end{equation*}
$$

In $\triangle P Q R$,

$$
\mathrm{PR}^{2}=\mathrm{PQ}^{2}+\mathrm{QR}^{2}
$$

(Pythagoras Theorem)

$$
\begin{equation*}
=A^{\prime} B^{\prime 2}+B^{\prime} C^{\prime 2} \tag{iii}
\end{equation*}
$$

[From (ii)]
But $\quad A^{\prime} C^{\prime 2}=A^{\prime} B^{\prime 2}+B^{\prime} C^{\prime 2}$
[From (i)]
From equations (iii) and (iv), we have

$$
\begin{array}{rlrl}
& & \mathrm{PR}^{2} & =\mathrm{A}^{\prime} \mathrm{C}^{\prime 2} \\
\Rightarrow \quad \mathrm{PR} & =\mathrm{A}^{\prime} \mathrm{C}^{\prime} \tag{v}
\end{array}
$$

Now, in $\triangle \mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime}$ and $\triangle \mathrm{PQR}$,

$$
\begin{array}{rlrl}
\mathrm{A}^{\prime} \mathrm{B}^{\prime} & =\mathrm{PQ} & {[\text { From }(i i)]} \\
\mathrm{B}^{\prime} \mathrm{C}^{\prime} & =\mathrm{QR} & & {[\text { From }(i i)]} \\
\mathrm{A}^{\prime} \mathrm{C}^{\prime} & =\mathrm{PR} & & {[\text { From }(v)]}
\end{array}
$$

Therefore, $\Delta \mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime} \cong \triangle \mathrm{PQR}$
(SSS congruence rule)

$$
\begin{equation*}
\Rightarrow \quad \angle \mathrm{B}^{\prime}=\angle \mathrm{Q} \tag{СРСТ}
\end{equation*}
$$

$$
\begin{array}{ll}
\text { But } & \angle \mathrm{Q}=90^{\circ} \\
\therefore & \angle \mathrm{B}^{\prime}=90^{\circ} .
\end{array}
$$

Hence proved.
2nd Part
In $\triangle \mathrm{ADC}, \angle \mathrm{D}=90^{\circ}$

$$
\begin{aligned}
\therefore \quad \mathrm{AC}^{2} & =\mathrm{AD}^{2}+\mathrm{DC}^{2}=6^{2}+8^{2} \\
& =36+64=100
\end{aligned}
$$

In $\triangle \mathrm{ABC}$,
$\mathrm{AB}^{2}+\mathrm{AC}^{2}=24^{2}+100=676$
and $\quad B C^{2}=26^{2}=676$
Clearly, $\mathrm{BC}^{2}=\mathrm{AB}^{2}+\mathrm{AC}^{2}$
Hence, by converse of Pythagoras Theorem, in $\triangle A B C$,

$$
\angle \mathrm{BAC}=90^{\circ}
$$

$\Rightarrow \triangle \mathrm{ABC}$ is a right triangle.

WORKSHEET-85

1. $\frac{\operatorname{ar}(\triangle \mathrm{ADE})}{\operatorname{ar}(\triangle \mathrm{ABC})}=\frac{\mathrm{DE}^{2}}{\mathrm{BC}^{2}}$

$$
\Rightarrow \quad \operatorname{ar}(\triangle \mathrm{ADE})=\frac{\left(\frac{2}{3} \mathrm{BC}\right)^{2}}{\mathrm{BC}^{2}} \times 81=36 \mathrm{~cm}^{2} .
$$

2. $\triangle \mathrm{OAB} \sim \Delta \mathrm{OCD}$

$$
\begin{aligned}
& \Rightarrow \quad \frac{\mathrm{OA}}{\mathrm{OC}}=\frac{\mathrm{OB}}{\mathrm{OD}} \\
& \Rightarrow \quad \mathrm{OB}=4 \times \frac{3}{2}=6 \mathrm{~cm} .
\end{aligned}
$$

3. In $\triangle A B C$, to make $D E \| A B$, we have to take

$$
\begin{array}{ll}
\Rightarrow & \frac{\mathrm{AD}}{\mathrm{DC}}=\frac{\mathrm{BE}}{\mathrm{EC}} \Rightarrow \frac{3 x+19}{x+3}=\frac{3 x+4}{x} \\
\Rightarrow & 3 x^{2}+19 x=3 x^{2}+4 x+9 x+12 \\
\Rightarrow & \\
\Rightarrow & 6 x=12 \Rightarrow x=2 .
\end{array}
$$

4. No,
$\because \quad \Delta$ FED $\sim \Delta$ STU
Corresponding sides of the similar triangles are in equal ratio.
$\therefore \quad \frac{\mathrm{DE}}{\mathrm{TU}}=\frac{\mathrm{EF}}{\mathrm{ST}}$
$\therefore \quad \frac{\mathrm{DE}}{\mathrm{ST}} \neq \frac{\mathrm{EF}}{\mathrm{TU}}$.
5. $\mathrm{AB} \| \mathrm{PQ} \Rightarrow \frac{\mathrm{AP}}{\mathrm{AO}}=\frac{\mathrm{BQ}}{\mathrm{BO}}$
$\mathrm{AC} \| \mathrm{PR} \Rightarrow \frac{\mathrm{AP}}{\mathrm{AO}}=\frac{\mathrm{CR}}{\mathrm{CO}}$
From (i) and (ii), $\frac{B Q}{B O}=\frac{C R}{C O}$
$\Rightarrow B C \| Q R$.
(By converse of BPT)
6. 1:2.

Hint: Let $\mathrm{AB}=\mathrm{BC}=a$
$\therefore \quad \mathrm{AC}=\sqrt{2} a$
$\therefore \frac{\operatorname{ar}(\triangle \mathrm{ABE})}{\operatorname{ar}(\triangle \mathrm{ACD})}=\frac{\mathrm{AB}^{2}}{\mathrm{AC}^{2}}$.
7. In $\triangle A B C$ and $\triangle A M P$,

$$
\begin{aligned}
\angle \mathrm{A} & =\angle \mathrm{A} \\
\angle \mathrm{ABC} & =\angle \mathrm{AMP}=90^{\circ}
\end{aligned}
$$

(i) $\therefore \quad \triangle \mathrm{ABC} \sim \triangle \mathrm{AMP}$,
(AA criterion)
(ii) $\therefore \quad \frac{\mathrm{CA}}{\mathrm{PA}}=\frac{\mathrm{BC}}{\mathrm{MP}}$.
(\because Corresponding sides of similar triangles are proportional.)
8. Hint:

$$
\begin{aligned}
& \operatorname{ar}(\triangle \mathrm{AXY})=\operatorname{ar}(\mathrm{BXYC}) \\
& \Rightarrow 2 \cdot \operatorname{ar}(\triangle \mathrm{AXY})=\operatorname{ar}(\mathrm{BXYC})+\operatorname{ar}(\triangle \mathrm{AXY}) \\
&=\operatorname{ar}(\triangle \mathrm{ABC}) \\
& \Rightarrow \quad \operatorname{ar}(\triangle \mathrm{ABC}) \\
& \operatorname{ar}(\triangle \mathrm{AXY})=\frac{2}{1} \\
& \text { As } \quad \Delta \mathrm{ABC} \sim \Delta \mathrm{AXY}
\end{aligned}
$$

$$
\begin{aligned}
& \therefore \quad\left(\frac{\mathrm{AB}}{\mathrm{AX}}\right)^{2}=\frac{\operatorname{ar}(\triangle \mathrm{ABC})}{\operatorname{ar}(\triangle \mathrm{AXY})}=\frac{2}{1} \\
& \Rightarrow \quad \\
& \Rightarrow \quad \frac{\mathrm{AB}}{\mathrm{AX}}=\frac{\sqrt{2}}{1} \Rightarrow \frac{\mathrm{BX}}{\mathrm{AB}}=\frac{\sqrt{2}-1}{\sqrt{2}} .
\end{aligned}
$$

9. Hint: Prove converse of Pythagoras Theorem.

WORKSHEET - 86

1. $\mathrm{AB}^{2}=(6 \sqrt{3})^{2}=108, \mathrm{BC}^{2}=6^{2}=36$
and $\quad A C^{2}=12^{2}=144$
Now, $108+36=144$
$\Rightarrow A B^{2}+B C^{2}=A C^{2}$
$\Rightarrow \quad \triangle \mathrm{ABC}$ is a right-angled triangle, rightangled at B.
2. Since $\triangle \mathrm{ABC} \sim \triangle \mathrm{DEF}$

$$
\begin{array}{lrl}
\Rightarrow & \frac{\mathrm{AB}}{\mathrm{DE}} & =\frac{\mathrm{BC}}{\mathrm{EF}}=\frac{\mathrm{CA}}{\mathrm{FD}} \\
\Rightarrow & \frac{4}{\mathrm{DE}} & =\frac{3.5}{\mathrm{EF}}=\frac{2.5}{7.5}=\frac{1}{3} \\
\Rightarrow & \mathrm{DE} & =12 \mathrm{~cm} \\
& \text { and } & \mathrm{EF} \\
& =10.5 \mathrm{~cm} \\
& \text { Then, perimeter of } \Delta \mathrm{DEF} \\
& & =\mathrm{DE}+\mathrm{EF}+\mathrm{FD} \\
12+10.5+7.5 & =30 \mathrm{~cm} .
\end{array}
$$

3. $\frac{\operatorname{ar}(\triangle \mathrm{DEF})}{\operatorname{ar}(\triangle \mathrm{ABC})}=\frac{\mathrm{EF}^{2}}{\mathrm{BC}^{2}}$

$$
\Rightarrow \quad \operatorname{ar}(\triangle \mathrm{DEF})=54 \times \frac{16}{9}=96 \mathrm{~cm}^{2}
$$

4. In $\triangle \mathrm{ABC}$ and $\triangle \mathrm{ADE}$,

$$
\mathrm{AB}=\sqrt{\mathrm{AC}^{2}+\mathrm{BC}^{2}}=\sqrt{25+144}=13 \mathrm{~cm}
$$

$$
\text { Now, } \frac{\mathrm{AB}}{\mathrm{AD}}=\frac{\mathrm{BC}}{\mathrm{DE}}=\frac{\mathrm{AC}}{\mathrm{AE}}
$$

$$
\Rightarrow \quad \frac{13}{3}=\frac{12}{\mathrm{DE}}=\frac{5}{\mathrm{AE}}
$$

$$
\Rightarrow \quad \mathrm{DE}=\frac{36}{13} \mathrm{~cm} \text { and } \mathrm{AE}=\frac{15}{13} \mathrm{~cm} .
$$

$$
\begin{aligned}
& \angle \mathrm{BAC}=\angle \mathrm{DAE} \quad \text { (Common angle) } \\
& \angle \mathrm{ACB}=\angle \mathrm{AED} \\
& \text { (Each } 90^{\circ} \text {) } \\
& \therefore \quad \triangle \mathrm{ABC} \sim \triangle \mathrm{ADE} \quad \text { (AA criterion) }
\end{aligned}
$$

5. No.

Ratio of areas of two similar triangles

$$
\begin{aligned}
& =\text { Square of ratio of their } \\
& \text { corresponding altitudes } \\
& =\left(\frac{3}{5}\right)^{2}=\frac{9}{25} \neq \frac{6}{5} .
\end{aligned}
$$

Hence, it is not correct to say that ratio of areas of the triangles is $\frac{6}{5}$.
6.

$$
\begin{align*}
& \mathrm{AE}^{2}=\mathrm{AC}^{2}+\mathrm{EC}^{2} \tag{i}\\
& \mathrm{BD}^{2}=\mathrm{DC}^{2}+\mathrm{BC}^{2} \tag{ii}
\end{align*}
$$

Adding (i) and (ii), we get

$$
\begin{aligned}
\mathrm{AE}^{2}+\mathrm{BD}^{2} & =\mathrm{AC}^{2}+\mathrm{EC}^{2}+\mathrm{DC}^{2}+\mathrm{BC}^{2} \\
& =\left(\mathrm{AC}^{2}+\mathrm{BC}^{2}\right)+\left(\mathrm{EC}^{2}+\mathrm{DC}^{2}\right) \\
\Rightarrow \mathrm{AE}^{2}+\mathrm{BD}^{2} & =\mathrm{AB}^{2}+\mathrm{DE}^{2} .
\end{aligned}
$$

Hence proved.
7. In $\triangle \mathrm{AQO}$ and $\triangle \mathrm{BPO}$,

$$
\begin{aligned}
& \angle \mathrm{QAO}=\angle \mathrm{PBO} \\
& \angle \mathrm{AOQ}=\angle \mathrm{BOP}
\end{aligned}
$$

(Vertical opposite angles)
So, by AA rule of similarity,

$$
\Delta \mathrm{AQO} \sim \Delta \mathrm{BPO}
$$

$\Rightarrow \quad \frac{\mathrm{AQ}}{\mathrm{BP}}=\frac{\mathrm{AO}}{\mathrm{BO}}$
$\Rightarrow \quad \frac{\mathrm{AQ}}{9}=\frac{10}{6} \Rightarrow \mathrm{AQ}=\frac{10 \times 9}{6}$
$\Rightarrow \quad \mathrm{AQ}=15 \mathrm{~cm}$.
OR
Let the height of the tower be h metres

$\triangle \mathrm{ABC} \sim \Delta \mathrm{PQR}$.

$$
\begin{array}{ll}
\Rightarrow & \frac{\mathrm{AB}}{\mathrm{PQ}}=\frac{\mathrm{BC}}{\mathrm{QR}} \Rightarrow \frac{12}{h}=\frac{8}{40} \\
\Rightarrow & h=\frac{12 \times 40}{8}=60 \text { metres. }
\end{array}
$$

8. Hint: As $\triangle A O B \sim \triangle C O D$

$\frac{\operatorname{ar}(\triangle \mathrm{AOB})}{\operatorname{ar}(\triangle \mathrm{COD})}=\frac{\mathrm{AB}^{2}}{\mathrm{CD}^{2}}=\frac{(2 \mathrm{CD})^{2}}{\mathrm{CD}^{2}}=\frac{4}{1}$.
9. Hint: Prove Pythagoras Theorem.

For 2nd Part:
$\therefore \quad \mathrm{AB}^{2}=\mathrm{AD}^{2}+\mathrm{BD}^{2}$
Also $\quad \mathrm{AC}^{2}=\mathrm{AD}^{2}+\mathrm{CD}^{2}$
From (i) and (ii),

$$
\begin{align*}
& \Rightarrow \mathrm{AB}^{2}-\mathrm{AC}^{2}=\mathrm{BD}^{2}-\mathrm{CD}^{2} \tag{ii}\\
& \Rightarrow \mathrm{AB}^{2}+\mathrm{CD}^{2}=\mathrm{AC}^{2}+\mathrm{BD}^{2} .
\end{align*}
$$

Hence proved.

WORKSHEET - 87

1.

$$
\begin{array}{rlrl}
\angle \mathrm{M} & =180^{\circ}-(\angle \mathrm{L}+\angle \mathrm{N}) \quad(\mathrm{ASP}) \\
& & & 180^{\circ}-\left(50^{\circ}+60^{\circ}\right)=70^{\circ} \\
& & \Delta \mathrm{LMN} & \sim \Delta \mathrm{PQR} \\
\therefore & \angle \mathrm{M} & =\angle \mathrm{Q} \Rightarrow \angle \mathrm{Q}=70^{\circ} .
\end{array}
$$

2. In $\triangle \mathrm{KMN}$, as $\mathrm{PQ} \| \mathrm{MN}$,

$$
\begin{aligned}
& & \frac{\mathrm{KP}}{\mathrm{PM}} & =\frac{\mathrm{KQ}}{\mathrm{QN}} \\
& \Rightarrow & \frac{\mathrm{KP}}{\mathrm{PM}} & =\frac{\mathrm{KQ}}{\mathrm{KN}-\mathrm{KQ}} \\
& \Rightarrow & \frac{\mathrm{KN}}{\mathrm{KQ}}-1 & =\frac{\mathrm{PM}}{\mathrm{KP}} \\
& \Rightarrow & \frac{20.4}{\mathrm{KQ}}-1 & =\frac{13}{4} \\
& \Rightarrow & \frac{20.4}{\mathrm{KQ}} & =1+\frac{13}{4}=\frac{17}{4} \\
\Rightarrow & & \mathrm{KQ} & =\frac{20.4 \times 4}{17} \\
\Rightarrow & & \mathrm{KQ} & =4.8 \mathrm{~cm} .
\end{aligned}
$$

3. $\triangle \mathrm{ABC} \sim \triangle \mathrm{DEF}$.
4. $\because \triangle \mathrm{ABC} \sim \Delta \mathrm{PQR}$

$$
\therefore \frac{\operatorname{ar}(\triangle \mathrm{PRQ})}{\operatorname{ar}(\triangle \mathrm{BCA})}=\frac{\mathrm{QR}^{2}}{\mathrm{BC}^{2}}=\left(\frac{3}{1}\right)^{2}=\frac{9}{1}=9: 1 .
$$

5. True

Hint: Use Basic Proportionality Theorem

6. Hint:

Use: $\angle 1=\angle 2$ $\angle 3=\angle 4$.
7. Draw EOF || AD

$\therefore \quad \mathrm{OB}^{2}=\mathrm{EO}^{2}+\mathrm{EB}^{2}$

$$
\mathrm{OD}^{2}=\mathrm{OF}^{2}+\mathrm{DF}^{2}
$$

$\therefore \mathrm{OB}^{2}+\mathrm{OD}^{2}=\mathrm{EO}^{2}+\mathrm{EB}^{2}+\mathrm{OF}^{2}+\mathrm{DF}^{2}$

$$
=\mathrm{EO}^{2}+\mathrm{CF}^{2}+\mathrm{OF}^{2}+\mathrm{AE}^{2}
$$

$$
[\because \mathrm{DF}=\mathrm{AE}, \mathrm{~EB}=\mathrm{CF}]
$$

$$
=\left(\mathrm{EO}^{2}+\mathrm{AE}^{2}\right)+\left(\mathrm{CF}^{2}+\mathrm{OF}^{2}\right)
$$

$$
\Rightarrow \mathrm{OB}^{2}+\mathrm{OD}^{2}=\mathrm{OA}^{2}+\mathrm{OC}^{2}
$$

OR

Join OA, OB and OC
In right $\triangle \mathrm{AOF}$,

$$
\begin{equation*}
\mathrm{AO}^{2}=\mathrm{AF}^{2}+\mathrm{OF}^{2} \tag{i}
\end{equation*}
$$

In right $\triangle \mathrm{AOE}$,

$$
\begin{equation*}
\mathrm{AO}^{2}=\mathrm{AE}^{2}+\mathrm{OE}^{2} \tag{ii}
\end{equation*}
$$

From equations (i) and (ii), we have

$$
\begin{equation*}
\mathrm{AF}^{2}+\mathrm{OF}^{2}=\mathrm{AE}^{2}+\mathrm{OE}^{2} \tag{iii}
\end{equation*}
$$

Similarly, we can find out that

$$
\begin{equation*}
\mathrm{BD}^{2}+\mathrm{OD}^{2}=\mathrm{BF}^{2}+\mathrm{OF}^{2} \tag{iv}
\end{equation*}
$$

and $\quad \mathrm{CE}^{2}+\mathrm{OE}^{2}=\mathrm{CD}^{2}+\mathrm{OD}^{2}$
Adding equations (iii), (iv) and (v), we arrive

$$
\mathrm{AF}^{2}+\mathrm{BD}^{2}+\mathrm{CE}^{2}=\mathrm{AE}^{2}+\mathrm{BF}^{2}+\mathrm{CD}^{2}
$$

Hence the result.
8. $\triangle \mathrm{ABC} \sim \triangle \mathrm{PQR}$

$$
\Rightarrow \quad \frac{\mathrm{AB}}{\mathrm{PQ}}=\frac{\mathrm{BC}}{\mathrm{QR}} \text { and } \angle \mathrm{B}=\angle \mathrm{Q}
$$

$$
\begin{aligned}
& \Rightarrow \quad \frac{\mathrm{AB}}{\mathrm{PQ}}=\frac{\frac{1}{2} \mathrm{BC}}{\frac{1}{2} \mathrm{QR}} \text { and } \angle \mathrm{B}=\angle \mathrm{Q} \\
& \Rightarrow \quad \frac{\mathrm{AB}}{\mathrm{PQ}}=\frac{\mathrm{BP}}{\mathrm{QM}} \text { and } \angle \mathrm{B}=\angle \mathrm{Q}
\end{aligned}
$$

$$
(\because \mathrm{BD}=\mathrm{DC} \text { and } \mathrm{QM}=\mathrm{MR})
$$

$$
\Rightarrow \quad \Delta \mathrm{ABD} \sim \Delta \mathrm{PQM}
$$

$$
\Rightarrow \quad \frac{\mathrm{AB}}{\mathrm{PQ}}=\frac{\mathrm{AD}}{\mathrm{PM}} . \quad \text { Hence proved. }
$$

9. Let the two given triangles be ABC and PQR such that $\triangle \mathrm{ABC} \sim \triangle \mathrm{PQR}$

$$
\begin{equation*}
\therefore \quad \frac{\mathrm{AB}}{\mathrm{PQ}}=\frac{\mathrm{BC}}{\mathrm{QR}} \tag{i}
\end{equation*}
$$

Let us draw perpendiculars AD and PM from A and P to BC and QR respectively.

$$
\begin{equation*}
\therefore \quad \angle \mathrm{ADB}=\angle \mathrm{PMQ}=90^{\circ} \tag{ii}
\end{equation*}
$$

Now, in $\triangle \mathrm{ABD}$ and $\triangle \mathrm{PQM}$,

$$
\begin{aligned}
\angle \mathrm{B} & =\angle \mathrm{Q}(\because \Delta \mathrm{ABC} \sim \Delta \mathrm{PQR}) \\
\angle \mathrm{ADB} & =\angle \mathrm{PMQ} \quad[\text { From }(i i)]
\end{aligned}
$$

So, by AA rule of similarity, we have

$$
\begin{align*}
\Delta \mathrm{ABD} & \sim \Delta \mathrm{PQM} \\
\Rightarrow \quad \frac{\mathrm{AB}}{\mathrm{PQ}} & =\frac{\mathrm{AD}}{\mathrm{PM}} \tag{iii}
\end{align*}
$$

From equations (i) and (iii), we get

$$
\begin{equation*}
\frac{\mathrm{BC}}{\mathrm{QR}}=\frac{\mathrm{AD}}{\mathrm{PM}} \tag{iv}
\end{equation*}
$$

Now, $\frac{\operatorname{ar}(\triangle \mathrm{ABC})}{\operatorname{ar}(\triangle \mathrm{PQR})}=\frac{\frac{1}{2} \times \mathrm{BC} \times \mathrm{AD}}{\frac{1}{2} \times \mathrm{QR} \times \mathrm{PM}}$

$$
\begin{align*}
& =\frac{\frac{1}{2} \times \mathrm{BC} \times \mathrm{BC}}{\frac{1}{2} \times \mathrm{QR} \times \mathrm{QR}} \\
& =\left(\frac{\mathrm{BC}}{\mathrm{QR}}\right)^{2} \quad[\text { Using (iv)] }
\end{align*}
$$

Similarly, we can prove that

$$
\begin{equation*}
\frac{\operatorname{ar}(\triangle \mathrm{ABC})}{\operatorname{ar}(\triangle \mathrm{PQR})}=\left(\frac{\mathrm{AB}}{\mathrm{PQ}}\right)^{2} \tag{vi}
\end{equation*}
$$

and $\frac{\operatorname{ar}(\triangle \mathrm{ABC})}{\operatorname{ar}(\triangle \mathrm{PQR})}=\left(\frac{\mathrm{AC}}{\mathrm{PR}}\right)^{2}$
From equations (v), (vi) and (vii), we obtain

$$
\begin{aligned}
\frac{\operatorname{ar}(\triangle \mathrm{ABC})}{\operatorname{ar}(\triangle \mathrm{PQR})}=\left(\frac{\mathrm{AB}}{\mathrm{PQ}}\right)^{2} & =\left(\frac{\mathrm{BC}}{\mathrm{QR}}\right)^{2} \\
& =\left(\frac{\mathrm{AC}}{\mathrm{PR}}\right)^{2} .
\end{aligned}
$$

Hence, the theorem.
Further, in the question,

$$
\begin{array}{rlrl}
& & \frac{\operatorname{ar}(\triangle \mathrm{ABC})}{\operatorname{ar}(\Delta \mathrm{DEF})} & =\left(\frac{\mathrm{BC}}{\mathrm{EF}}\right)^{2} \\
\Rightarrow \quad & \frac{64}{121} & =\frac{\mathrm{BC}^{2}}{15.4 \times 15.4} \\
\Rightarrow \quad & \mathrm{BC} & =\sqrt{\frac{64 \times 15.4 \times 15.4}{121}} \\
& =\frac{8}{11} \times 15.4=11.2 \mathrm{~cm} .
\end{array}
$$

WORKSHEET-88

1. Ratio of areas of two similar triangles

$$
=\text { Ratio of squares of their }
$$ corresponding sides.

$$
=4^{2}: 9^{2}=16: 81 .
$$

2. $\angle \mathrm{M}=\angle \mathrm{Q}=35^{\circ}$
(Corresponding angles)

$$
\frac{\mathrm{PQ}}{\mathrm{ML}}=\frac{\mathrm{QR}}{\mathrm{MN}}
$$

(Ratio of corresponding sides)
$\Rightarrow \quad \mathrm{MN}=5 \times \frac{12}{6}=10 \mathrm{~cm}$.
3. In $\triangle A B C, D E \| B C$

$$
\begin{array}{ll}
\Rightarrow & \frac{\mathrm{AB}}{\mathrm{AC}}=\frac{\mathrm{AD}}{\mathrm{AE}} \\
\Rightarrow & \mathrm{AB}=21 \times \frac{5}{7}=15 \mathrm{~cm}
\end{array}
$$

4. Yes.

$$
\begin{aligned}
& \frac{\mathrm{AP}}{\mathrm{AQ}}=\frac{5}{7.5}=\frac{2}{3} \\
& \frac{\mathrm{BP}}{\mathrm{BR}}=\frac{4}{6}=\frac{2}{3}
\end{aligned}
$$

Here, $\frac{\mathrm{AP}}{\mathrm{AQ}}=\frac{\mathrm{BP}}{\mathrm{BR}}$
Hence, due to the converse of Basic Proportionality Theorem, $A B \| Q R$.
5. $\because \mathrm{DB} \perp \mathrm{BC}$ and $\mathrm{AC} \perp \mathrm{BC}$
$\therefore \mathrm{DB} \| \mathrm{AC}$
Now, $\angle \mathrm{DBA}=\angle \mathrm{BAC} \quad$ (Alternate angles)
And, $\angle \mathrm{DEB}=\angle \mathrm{ACB} \quad\left(\right.$ Each $\left.90^{\circ}\right)$
$\therefore \quad \triangle \mathrm{BDE} \sim \triangle \mathrm{ABC} \quad$ (AA similarity)

$$
\frac{\mathrm{BE}}{\mathrm{AC}}=\frac{\mathrm{DE}}{\mathrm{BC}} \text { (Corresponding sides) }
$$

$\Rightarrow \quad \frac{B E}{D E}=\frac{A C}{B C} . \quad$ Hence proved.
6. $\frac{\mathrm{AX}}{\mathrm{AB}}=\frac{2-\sqrt{2}}{2}$

Hint: See Worksheet-85, Sol. 8.
7. Hint: $\mathrm{AM}=\frac{1}{2} \mathrm{AB} ; \mathrm{AL}=\frac{1}{2} \mathrm{AC}$

Use Pythagoras Theorem.
8. Let $A B C$ be a right-angled triangle such that: $\angle \mathrm{B}=90^{\circ}$ and $\mathrm{BC}=a ; \mathrm{AB}=c ; \mathrm{AC}=b$.

Let semicircles are drawn on side $A B, B C$ and $A C$ of $\triangle A B C$
$\therefore \quad$ radius of semicircle drawn on $A C=\frac{b}{2}$
radius of semicircle drawn on $\mathrm{AB}=\frac{c}{2}$
radius of semicircle drawn on $B C=\frac{a}{2}$
\therefore Area $\left(\mathrm{A}_{1}\right)$ of semicircle with radius

$$
\frac{b}{2}=\frac{1}{2} \pi\left(\frac{b}{2}\right)^{2}=\frac{\pi b^{2}}{8}
$$

and Area $\left(\mathrm{A}_{2}\right)$ of semicircle with radius

$$
\frac{c}{2}=\frac{1}{2} \pi\left(\frac{c}{2}\right)^{2}=\frac{\pi c^{2}}{8}
$$

also Area $\left(\mathrm{A}_{3}\right)$ of semicircle with radius

$$
\frac{a}{2}=\frac{1}{2} \pi\left(\frac{a}{2}\right)^{2}=\frac{\pi a^{2}}{8}
$$

As $\triangle \mathrm{ABC}$ is a right-angled triangle
\therefore Using Pythagoras theorem

$$
\begin{align*}
\mathrm{AC}^{2} & =\mathrm{AB}^{2}+\mathrm{BC}^{2} \\
b^{2} & =c^{2}+a^{2} \tag{i}\\
\therefore \quad \mathrm{~A}_{1} & =\frac{\pi b^{2}}{8} \\
& =\frac{\pi}{8}\left[c^{2}+a^{2}\right] \quad\{\because \text { Using }(i)\} \\
& =\frac{\pi}{8} c^{2}+\frac{\pi}{8} a^{2} \\
\mathrm{~A}_{1} & =\mathrm{A}_{2}+\mathrm{A}_{3}
\end{align*}
$$

Hence Proved.
9. As D and F are mid-points of $A B$ and $A C$ respectively.
$\Rightarrow \mathrm{DF} \| \mathrm{BC}$ and $\mathrm{DF}=\frac{1}{2} \mathrm{BC} . \Rightarrow \frac{\mathrm{DF}}{\mathrm{BC}}=\frac{1}{2}$ Also, as $\triangle \mathrm{ADF} \sim \triangle \mathrm{ABC}$

$$
\begin{equation*}
\Rightarrow \quad \frac{\operatorname{ar}(\triangle \mathrm{ADF})}{\operatorname{ar}(\triangle \mathrm{ABC})}=\frac{(\mathrm{DF})^{2}}{(\mathrm{BC})^{2}}=\frac{1}{4} \tag{i}
\end{equation*}
$$

As $\quad \operatorname{ar}(\triangle \mathrm{ADF})=\operatorname{ar}(\triangle \mathrm{BDE})=\operatorname{ar}(\triangle \mathrm{CFE})=$ $\operatorname{ar}(\triangle \mathrm{DEF})$
$\therefore(i) \Rightarrow \quad \frac{\operatorname{ar}(\triangle \mathrm{DEF})}{\operatorname{ar}(\triangle \mathrm{ABC})}=\frac{1}{4}$

(ii) Yes, as $\mathrm{DE} \| \mathrm{AC}$ and $\mathrm{DE}=\frac{1}{2} \mathrm{AC}$
(Using mid-point theorem)
But as

$$
\begin{aligned}
& \mathrm{AB}=\mathrm{AC}=\mathrm{BC} \\
& \mathrm{DE}=\frac{1}{2} \mathrm{BC} .
\end{aligned}
$$

(iii) Concept of similarity of two triangles and mid-point theorem.
(iv) His ability to think rationally and taking unbiased decision.

WORKSHEET - 89

1. Let the length of shadow is x metres.

$$
\begin{aligned}
\mathrm{BE} & =1.2 \times 4=4.8 \mathrm{~m} \\
\Delta \mathrm{ABC} & \sim \Delta \mathrm{DEC} \\
\frac{\mathrm{AB}}{\mathrm{DE}} & =\frac{\mathrm{BC}}{\mathrm{EC}} \\
\Rightarrow \quad \frac{3.6}{0.9} & =\frac{4.8+x}{x} \\
3.6 x & =4.32+0.9 x . \\
\Rightarrow \quad & \quad x=\frac{4.32}{2.7}=1.6 \mathrm{~m} .
\end{aligned}
$$

2. Here,

$$
\begin{aligned}
(a)^{2}+(\sqrt{3} a)^{2} & =a^{2}+3 a^{2} \\
& =4 a^{2}=(2 a)^{2}
\end{aligned}
$$

According to the converse of Pythagoras Theorem, the angle opposite to longest side is of measure 90°.
3.

$$
\begin{array}{rlrl}
& \frac{\mathrm{AD}}{\mathrm{DB}} & =\frac{2}{3} \Rightarrow \frac{\mathrm{AB}-\mathrm{AD}}{\mathrm{AD}}=\frac{3}{2} \\
\Rightarrow \quad & \frac{\mathrm{AB}}{\mathrm{AD}}-1 & =\frac{3}{2} \Rightarrow \frac{\mathrm{AB}}{\mathrm{AD}}=\frac{5}{2} \\
\mathrm{DE} \| \mathrm{BC} & \Rightarrow \triangle \mathrm{ABC} \sim \triangle \mathrm{ADE} \\
\therefore & \frac{\mathrm{BC}}{\mathrm{DE}} & =\frac{\mathrm{AB}}{\mathrm{AD}}=\frac{5}{2} .
\end{array}
$$

4. No.

In $\triangle \mathrm{PQD}$ and $\triangle \mathrm{RPD}$,
$\angle \mathrm{PDQ}=\angle \mathrm{PDR}=90^{\circ}$
But neither $\angle \mathrm{PQD}=\angle \mathrm{RPD}$
nor $\quad \angle \mathrm{PQD}=\angle \mathrm{PRD}$
Therefore, $\triangle \mathrm{PQD}$ is not similar to $\triangle \mathrm{RPD}$.

5. Hint: $\triangle \mathrm{BAC} \sim \triangle \mathrm{ADC}$
$\Rightarrow \frac{\mathrm{BA}}{\mathrm{AD}}=\frac{\mathrm{AC}}{\mathrm{DC}}=\frac{\mathrm{BC}}{\mathrm{AC}}$
$\Rightarrow C A^{2}=B C \times C D$.

6.
$\frac{\mathrm{AD}}{\mathrm{DB}}=\frac{5}{4} \Rightarrow \frac{\mathrm{AD}}{\mathrm{AB}-\mathrm{AD}}=\frac{5}{4}$
$\Rightarrow 5 \mathrm{AB}-5 \mathrm{AD}=4 \mathrm{AD} \Rightarrow \frac{\mathrm{AD}}{\mathrm{AB}}=\frac{5}{9}$
As DE || BC,
$\triangle \mathrm{ADE} \sim \triangle \mathrm{ABC}$
$\therefore \quad \frac{\mathrm{DE}}{\mathrm{BC}}=\frac{\mathrm{AD}}{\mathrm{AB}}=\frac{5}{9}$
[Using (i)]
$\because \mathrm{DE} \| \mathrm{BC}$ and DC is a transversal
$\therefore \quad \angle \mathrm{EDC} \sim \angle \mathrm{BCD}$
(Alternate interior angles)
i.e., $\quad \angle \mathrm{EDF}=\angle \mathrm{BCF}$

Similarly,

$$
\begin{equation*}
\angle \mathrm{DEF}=\angle \mathrm{CBF} \tag{iii}
\end{equation*}
$$

From equations (iii) and (iv), we have
$\triangle \mathrm{DEF} \sim \triangle \mathrm{CBF} \quad$ (AA similarity)
$\Rightarrow \quad \frac{\operatorname{ar}(\triangle \mathrm{DEF})}{\operatorname{ar}(\triangle \mathrm{CFB})}=\left(\frac{\mathrm{DE}}{\mathrm{BC}}\right)^{2}=\frac{25}{81}$.
[Using equation (ii)]
7.

$\mathrm{AB}=\mathrm{AC} ; \mathrm{DE}=\mathrm{DF}$
$\therefore \quad \frac{\mathrm{AB}}{\mathrm{AC}}=\frac{\mathrm{DE}}{\mathrm{DF}}=1$
$\Rightarrow \quad \frac{\mathrm{AB}}{\mathrm{DE}}=\frac{\mathrm{AC}}{\mathrm{DF}}$ also $\angle \mathrm{A}=\angle \mathrm{D}$
$\Rightarrow \quad \triangle \mathrm{ABC} \sim \triangle \mathrm{DEF}$
$\therefore \quad \frac{\operatorname{ar}(\triangle \mathrm{ABC})}{\operatorname{ar}(\triangle \mathrm{DEF})}=\frac{\mathrm{AL}^{2}}{\mathrm{DM}^{2}}$
$\Rightarrow \quad \frac{\mathrm{AL}}{\mathrm{DM}}=\frac{4}{5}$
\therefore Ratio of corresponding heights is $4: 5$.

OR

Proof: Draw a ray DZ parallel to the ray

XY.

In $\triangle A D Z, X Y \| D Z$
$\therefore \frac{\mathrm{AY}}{\mathrm{YZ}}=\frac{\mathrm{AX}}{\mathrm{XD}}=\frac{2}{3}$
$\Rightarrow 2 Y Z=3 A Y$

In $\triangle Y B C, B Y \| D Z$
$\therefore \frac{\mathrm{YZ}}{\mathrm{ZC}}=\frac{\mathrm{BD}}{\mathrm{DC}}=\frac{1}{1}$
$(\because \mathrm{BD}=\mathrm{DC})$
$\Rightarrow 2 Y Z=2 Z C$
From (i) and (ii),

$$
\begin{equation*}
2 \mathrm{ZC}=3 \mathrm{AY} \tag{iii}
\end{equation*}
$$

Now, $A C=A Y+Y Z+Z C$

$$
\begin{aligned}
& =\mathrm{AY}+\frac{3}{2} \mathrm{AY}+\frac{3}{2} \mathrm{AY}=\frac{8}{2} \mathrm{AY} \\
& =4 \mathrm{AY}
\end{aligned}
$$

Therefore, AC: AY $=4: 1$. Hence proved.
8. $2 \sqrt{5} \mathrm{~cm}$

Hint: $\mathrm{BD}=\frac{1}{2} \mathrm{BC}$; $\mathrm{EB}=\frac{1}{2} \mathrm{AB}$
Use Pythagoras Theorem.
9. Statement: In a right triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides.
Proof: We are given a right triangle ABC right angled at B.

We need to prove that $A C^{2}=A B^{2}+B C^{2}$ Let us draw $B D \perp A C$.
Now, $\triangle \mathrm{ADB} \sim \triangle \mathrm{ABC}$
So, $\frac{A D}{A B}=\frac{A B}{A C}$ (Sides are proportional)
or $A D \cdot A C=A B^{2}$
Also, $\triangle \mathrm{BDC} \sim \Delta \mathrm{ABC}$
So, $\frac{C D}{B C}=\frac{B C}{A C}$
or $C D \cdot A C=B C^{2}$
Adding equations (i) and (ii), we get

$$
\begin{array}{rlrl}
\mathrm{AD} \cdot \mathrm{AC}+\mathrm{CD} \cdot \mathrm{AC} & =\mathrm{AB}^{2}+\mathrm{BC}^{2} \\
& \Rightarrow & \mathrm{AC}(\mathrm{AD}+\mathrm{CD}) & =\mathrm{AB}^{2}+\mathrm{BC}^{2} \\
\Rightarrow & \mathrm{AC} \cdot \mathrm{AC} & =\mathrm{AB}^{2}+\mathrm{BC}^{2} \\
\Rightarrow & \mathrm{AC}^{2} & =\mathrm{AB}^{2}+\mathrm{BC}^{2}
\end{array}
$$

Hence proved.

2nd Part:

$$
\begin{aligned}
\mathrm{AB}^{2} & =\mathrm{AD}^{2}+\mathrm{BD}^{2} \\
& =\mathrm{AD}^{2}+(3 \mathrm{CD})^{2} \\
& =\mathrm{AD}^{2}+9 \mathrm{CD}^{2} \\
& =\mathrm{AD}^{2}+\mathrm{CD}^{2}+8 \mathrm{CD}^{2} \\
& =\mathrm{AC}^{2}+8 \mathrm{CD}^{2} \\
& =\mathrm{AC}^{2}+8\left(\frac{1}{4} \mathrm{BC}\right)^{2} \\
& {\left[\because \mathrm{CD}=\frac{1}{4} \mathrm{BC}\right] }
\end{aligned}
$$

$\therefore \quad 2 \mathrm{AB}^{2}=2 \mathrm{AC} C^{2}+B C^{2}$. Hence proved.

WORKSHEET - 90

1. $\frac{\mathrm{AB}}{\mathrm{PQ}}=\frac{\mathrm{BC}}{\mathrm{QR}}=\frac{\mathrm{AC}}{\mathrm{PR}}$
$(\because \Delta \mathrm{ABC} \sim \Delta \mathrm{PQR})$

$$
\Rightarrow \quad \frac{12}{9}=\frac{7}{x}=\frac{10}{y}
$$

$\therefore \quad x=\frac{7 \times 9}{12}=\frac{21}{4}$
and $\quad y=\frac{9 \times 10}{12}=\frac{15}{2}$.
2. Required ratio $=\sqrt{\frac{16}{25}}=\frac{4}{5}=4: 5$.
3. 17 m

Hint:

Use Pythagoras Theorem and find OP.
4. Hint:

$$
\begin{aligned}
\text { Let } & \mathrm{AB} & =c \\
& \mathrm{AC} & =b \\
& B C & =a \\
\therefore & a^{2} & =b^{2}+c^{2}
\end{aligned}
$$

Also, $\operatorname{ar}(\triangle \mathrm{ABE})=\frac{\sqrt{3}}{4} c^{2}$

$$
\begin{aligned}
\operatorname{ar}(\triangle \mathrm{BCF}) & =\frac{\sqrt{3}}{4} a^{2} \\
\operatorname{ar}(\triangle \mathrm{ACD}) & =\frac{\sqrt{3}}{4} b^{2}
\end{aligned}
$$

5. See Worksheet - 86, Sol. 6 .
6. Let $A B C D$ be a quadrilateral of which diagonals intersect each other at O .
It is given that

$$
\begin{equation*}
\frac{\mathrm{AO}}{\mathrm{CO}}=\frac{\mathrm{BO}}{\mathrm{DO}} \tag{i}
\end{equation*}
$$

or $\frac{\mathrm{AO}}{\mathrm{BO}}=\frac{\mathrm{CO}}{\mathrm{DO}}$
In $\triangle \mathrm{AOB}$ and $\triangle \mathrm{COD}$,
$\angle \mathrm{AOB}=\angle \mathrm{COD}$
(Vertically opposite angles)

$$
\begin{equation*}
\frac{\mathrm{AO}}{\mathrm{BO}}=\frac{\mathrm{CO}}{\mathrm{DO}} \tag{i}
\end{equation*}
$$

Hence, by SAS rule of similarity, we obtain $\triangle \mathrm{AOB} \sim \triangle \mathrm{COD}$
$\Rightarrow \angle \mathrm{BAO}=\angle \mathrm{DCO}$
i.e. $\angle \mathrm{BAC}=\angle \mathrm{DCA}$

These are alternate angles.
Therefore, $A B \| C D$ and $A C$ is transversal $\Rightarrow \mathrm{ABCD}$ is a trapezium. Hence proved OR
Hint:
As $\angle \mathrm{BAC}=\angle \mathrm{EFG} ; \angle \mathrm{ABC}=\angle \mathrm{FEG}$
and $\angle \mathrm{ACB}=\angle \mathrm{FGE}$

$$
\begin{array}{llrl}
& \therefore & \frac{1}{2} \angle \mathrm{ACB} & =\frac{1}{2} \angle \mathrm{FGE} \\
& \therefore & \angle \mathrm{ACD} & =\angle \mathrm{FGH} \\
& \text { and } & \angle \mathrm{DCB} & =\angle \mathrm{HGE} \\
& \therefore & \Delta \mathrm{DCA} & \sim \Delta \mathrm{HGF}
\end{array}
$$

Similarly, $\triangle \mathrm{DCB} \sim \Delta \mathrm{HGE}$.
7. Hint:

Prove that $\triangle \mathrm{AEB} \sim \triangle \mathrm{DEC}$.
8. Statement: If a line is drawn parallel to one side of a triangle to intersect the other two sides at distinct points, the other two sides are divided in the same ratio.
Proof: $A B C$ is a given triangle in which DE || $B C$. DE intersects $A B$ and $A C$ at D and E respectively.

We have to prove

$$
\frac{\mathrm{AD}}{\mathrm{BD}}=\frac{\mathrm{AE}}{\mathrm{CE}}
$$

Let us draw $\mathrm{EM} \perp \mathrm{AB}$ and $\mathrm{DN} \perp \mathrm{AC}$. Join $B E$ and CD.
Now, $\quad \operatorname{ar}(\triangle \mathrm{ADE})=\frac{1}{2} \times$ base \times height

$$
\begin{equation*}
=\frac{1}{2} \times \mathrm{AD} \times \mathrm{EM} \tag{i}
\end{equation*}
$$

$$
\text { Also, } \begin{align*}
& \operatorname{ar}(\triangle \mathrm{ADE})=\frac{1}{2} \times \mathrm{AE} \times \mathrm{DN} \tag{ii}\\
& \operatorname{ar}(\triangle \mathrm{BDE})=\frac{1}{2} \times \mathrm{BD} \times \mathrm{EM} \tag{iii}\\
& \operatorname{ar}(\triangle \mathrm{CDE})= \tag{iv}\\
& \frac{1}{2} \times \mathrm{CE} \times \mathrm{DN}
\end{align*}
$$

Dividing equation (i) by equation (iii) and equation (ii) by equation (iv), we have

$$
\begin{equation*}
\frac{\operatorname{ar}(\triangle \mathrm{ADE})}{\operatorname{ar}(\triangle \mathrm{BDE})}=\frac{\mathrm{AD}}{\mathrm{BD}} \tag{v}
\end{equation*}
$$

and $\frac{\operatorname{ar}(\triangle \mathrm{ADE})}{\operatorname{ar}(\triangle \mathrm{CDE})}=\frac{\mathrm{AE}}{\mathrm{CE}}$
But $\quad \operatorname{ar}(\triangle \mathrm{BDE})=\operatorname{ar}(\triangle \mathrm{CDE})$
(Triangles are on the same base DE and between the same parallels $B C$ and $D E$) Comparing equations (v), (vi) and (vii), we have

$$
\frac{\mathrm{AD}}{\mathrm{BD}}=\frac{\mathrm{AE}}{\mathrm{CE}}
$$

2nd Part

Join EF and join BD to intersect EF at O.

$\because A B|\mid D C$, and $E F| \mid A B$,
$\therefore \mathrm{AB}\|\mathrm{DC}\| \mathrm{EF}$
In $\triangle A B D, E O \| A B$,

$$
\begin{equation*}
\frac{\mathrm{DE}}{\mathrm{AE}}=\frac{\mathrm{DO}}{\mathrm{BO}} \tag{viii}
\end{equation*}
$$

(Basic Proportionality Theorem) Similarly, in $\triangle B C D$,

$$
\begin{equation*}
\frac{\mathrm{DO}}{\mathrm{BO}}=\frac{\mathrm{CF}}{\mathrm{BF}} \tag{ix}
\end{equation*}
$$

Using equations (viii) and (ix), we obtain the required result, i.e.,

$$
\frac{\mathrm{AE}}{\mathrm{ED}}=\frac{\mathrm{BF}}{\mathrm{FC}}
$$

WORKSHEET-91

1. $\frac{\mathrm{DE}}{\mathrm{AB}}=\frac{\mathrm{EF}}{\mathrm{BC}}=\frac{\mathrm{DF}}{\mathrm{AC}}$
(i) (ii) (iii)
$=\frac{D E+E F+D F}{A B+B C+C A}$
(iv)
$\Rightarrow \quad \frac{4}{2}=\frac{\text { Perimeter of } \triangle \mathrm{DEF}}{3+2+2.5}$
[Taking (ii) and (iv)]
\Rightarrow Perimeter of $\triangle \mathrm{DEF}=15 \mathrm{~cm}$.
2. $\mathrm{DE} \| \mathrm{BC}$

$$
\begin{aligned}
\Rightarrow & \frac{x}{x-2} & =\frac{x+2}{x-1} \\
\Rightarrow & x^{2}-4 & =x^{2}-x \\
\Rightarrow & x & =4 .
\end{aligned}
$$

3. $\Delta \mathrm{KNP} \sim \Delta \mathrm{KML}$
$\Rightarrow \frac{x}{a}=\frac{c}{b+c} \quad \therefore \quad x=\frac{a c}{b+c}$.
4. Hint:

Prove that $\triangle \mathrm{ADL} \sim \triangle \mathrm{CPD}$.
5. Hint: $2 \mathrm{AP}=\mathrm{PC} \Rightarrow \mathrm{AP}=\frac{1}{3} \mathrm{AC}$

Similarly, $\mathrm{BQ}=\frac{1}{3} \mathrm{BC}$
Use Pythagoras Theorem.
6. $\mathrm{PQ} \| \mathrm{BC} \Rightarrow \frac{\mathrm{AP}}{\mathrm{PB}}=\frac{\mathrm{AQ}}{\mathrm{QC}}=\frac{1}{2}$
$\therefore \quad \triangle \mathrm{APQ} \sim \triangle \mathrm{ABC}$
$\Rightarrow \frac{\operatorname{ar}(\triangle \mathrm{ABC})}{\operatorname{ar}(\triangle \mathrm{APQ})}=\left(\frac{\mathrm{AB}}{\mathrm{AP}}\right)^{2}=(3)^{2}=9$
$\left[\because \frac{\mathrm{AB}}{\mathrm{AP}}=3\right]$
$\Rightarrow \frac{\operatorname{ar}(\triangle \mathrm{ABC})}{\operatorname{ar}(\triangle \mathrm{APQ})}-1=8$

$$
\begin{aligned}
& \frac{\operatorname{ar}(\triangle \mathrm{APB})}{\operatorname{ar}(\triangle \mathrm{AQC})}=\frac{\frac{\sqrt{3}}{4} \mathrm{AB}^{2}}{\frac{\sqrt{3}}{2} \mathrm{AB}^{2}}=\frac{1}{2} \\
\Rightarrow \quad & \operatorname{ar}(\triangle \mathrm{APB})=\frac{1}{2} \operatorname{ar}(\triangle \mathrm{AQC}) .
\end{aligned}
$$

Hence proved.
7. Hint:

Extend AD till E such that $\mathrm{AD}=\mathrm{DE}$ and similarly, $\mathrm{PM}=\mathrm{MN}$
Prove that $\triangle \mathrm{ACE} \sim \triangle \mathrm{PRN}$

$$
\begin{array}{rlrl}
& & \angle 1 & =\angle 2 \\
\text { But } & & \angle 3 & =\angle 5, \\
& \angle 3 & =\angle 4 \text { and } \angle 4=\angle 6 \\
\therefore & & \angle 5=\angle 6
\end{array}
$$

Adding (i) and (ii),

$$
\begin{align*}
& \angle 1+\angle 5=\angle 2+\angle 6 \\
\Rightarrow & \angle \mathrm{BAC}=\angle \mathrm{QPR} \\
\therefore & \Delta \mathrm{ABC} \sim \triangle \mathrm{PQR} . \tag{BySAS}
\end{align*}
$$

8. Let us take two similar triangles $A B C$ and $P Q R$ such that $\triangle A B C \sim \triangle P Q R$.

$$
\begin{equation*}
\therefore \quad \frac{\mathrm{AB}}{\mathrm{PQ}}=\frac{\mathrm{BC}}{\mathrm{QR}}=\frac{\mathrm{CA}}{\mathrm{RP}} \tag{i}
\end{equation*}
$$

We need to prove

$$
\frac{\operatorname{ar}(\triangle \mathrm{ABC})}{\operatorname{ar}(\triangle \mathrm{PQR})}=\frac{\mathrm{AB}^{2}}{\mathrm{PQ}^{2}}=\frac{\mathrm{BC}^{2}}{\mathrm{QR}^{2}}=\frac{\mathrm{CA}^{2}}{\mathrm{RP}^{2}}
$$

Let us draw $\mathrm{AM} \perp \mathrm{BC}$ and $\mathrm{PN} \perp \mathrm{QR}$.

$$
\begin{array}{rlrl}
\because & \triangle \mathrm{ABC} & \sim \triangle \mathrm{PQR} \\
& \therefore & \angle \mathrm{~B} & =\angle \mathrm{Q} \tag{ii}
\end{array}
$$

In $\triangle \mathrm{ABM}$ and $\triangle \mathrm{PQN}$,

$$
\angle \mathrm{B}=\angle \mathrm{Q}
$$

[From (ii)]
(Each 90°)
(AA criterion)
$\therefore \triangle \mathrm{ABM} \sim \triangle \mathrm{PQN}$

From equations (i) and (iii), we have

$$
\begin{equation*}
\frac{\mathrm{AM}}{\mathrm{PN}}=\frac{\mathrm{BC}}{\mathrm{QR}} \tag{iv}
\end{equation*}
$$

Now, $\quad \operatorname{ar}(\triangle \mathrm{ABC})=\frac{1}{2} \times$ base \times height

$$
=\frac{1}{2} \times \mathrm{BC} \times \mathrm{AM}
$$

And $\quad \operatorname{ar}(\triangle \mathrm{PQR})=\frac{1}{2} \times \mathrm{QR} \times \mathrm{PN}$
Therefore, $\frac{\operatorname{ar}(\triangle \mathrm{ABC})}{\operatorname{ar}(\triangle \mathrm{PQR})}=\frac{\mathrm{BC} \times \mathrm{AM}}{\mathrm{QR} \times \mathrm{PN}}$

$$
\begin{equation*}
=\frac{\mathrm{BC}^{2}}{\mathrm{QR}^{2}} \tag{v}
\end{equation*}
$$

[Using (iv)]
From results (i) and (v), we arrive

$$
\frac{\operatorname{ar}(\triangle \mathrm{ABC})}{\operatorname{ar}(\triangle \mathrm{PQR})}=\frac{\mathrm{AB}^{2}}{\mathrm{PQ}^{2}}=\frac{\mathrm{BC}^{2}}{\mathrm{QR}^{2}}=\frac{\mathrm{CA}^{2}}{\mathrm{RP}^{2}}
$$

Hence the result.
Further, consider the question in the following figure.

$\angle \mathrm{ABO}=\angle \mathrm{CDO}$ and $\angle \mathrm{BAO}=\angle \mathrm{DCO}$
(Alternate angles)

$$
\begin{align*}
& \Rightarrow \quad \Delta \mathrm{AOB} \sim \Delta \mathrm{COD} \tag{AArule}\\
& \begin{aligned}
\Rightarrow \frac{\operatorname{ar}(\triangle \mathrm{AOB})}{\operatorname{ar}(\Delta \mathrm{COD})} & =\frac{\mathrm{AB}^{2}}{\mathrm{CD}^{2}} \\
\Rightarrow \operatorname{ar}(\Delta \mathrm{COD}) & =84 \times\left(\frac{1}{2}\right)^{2} \quad\left(\because \frac{\mathrm{CD}}{\mathrm{AB}}=\frac{1}{2}\right) \\
& =21 \mathrm{~cm}^{2} .
\end{aligned}
\end{align*}
$$

WORKSHEET-92

1. $294 \mathrm{~cm}^{2}$

Hint: Prove that $\triangle \mathrm{OBP} \sim \triangle \mathrm{OAQ}$.
2. 6 cm

Hint: Use AA-similarity to prove $\triangle \mathrm{AOB} \sim \triangle \mathrm{COD}$.
3. Hint: Draw AM \perp BC and $\mathrm{DN} \perp \mathrm{BC}$

As $\triangle \mathrm{AOM} \sim \triangle \mathrm{DON}$

$$
\begin{aligned}
& \Rightarrow \frac{\operatorname{ar}(\triangle \mathrm{ABC})}{\operatorname{ar}(\triangle \mathrm{DBC})} \\
& =\frac{\frac{1}{2} \times \mathrm{BC} \times \mathrm{AM}}{\frac{1}{2} \times \mathrm{BC} \times \mathrm{DN}} \\
& =\frac{\mathrm{AM}}{\mathrm{DN}}=\frac{\mathrm{AO}}{\mathrm{OD}}
\end{aligned}
$$

4. Hint: Use concept of similarity.
5. Draw AP \perp BC

$$
\begin{aligned}
\therefore \quad \mathrm{AB}^{2} & =\mathrm{AP}^{2}+\mathrm{BP}^{2} \\
& =\mathrm{AP}^{2}+(\mathrm{BD}+\mathrm{DP})^{2}
\end{aligned}
$$

$$
\Rightarrow \quad \mathrm{AB}^{2}=\mathrm{AP}^{2}+\mathrm{BD}^{2}+\mathrm{DP}^{2}+2 \mathrm{BD} . \mathrm{DP}
$$

$$
=\mathrm{AD}^{2}+\mathrm{BD}(\mathrm{BD}+2 \mathrm{DP})
$$

$$
\Rightarrow \mathrm{AB}^{2}-\mathrm{AD}^{2}=\mathrm{BD} \times \mathrm{CD} . \quad[\because \mathrm{BP}=\mathrm{PC}]
$$

Hence proved.
6. Hint:

From figure, show $x=\frac{a b}{a+b}$.
7. In $\triangle \mathrm{MDE}$ and $\triangle \mathrm{MCB}$,

$$
\begin{aligned}
\angle \mathrm{MDE} & =\angle \mathrm{MCB} \quad \text { (Alternate angles) } \\
\mathrm{MD} & =\mathrm{MC} \quad(\mathrm{M} \text { is mid-point of } \mathrm{CD}) \\
\angle \mathrm{DME} & =\angle \mathrm{CMB}
\end{aligned}
$$

(Vertically opposite angles)

$$
\begin{array}{lrr}
\therefore & \triangle \mathrm{MDE} \cong \triangle \mathrm{MCB}, & \text { (ASA criterion) } \\
\Rightarrow & \mathrm{DE}=\mathrm{CB} & (\mathrm{CPCT}) \tag{СРСТ}
\end{array}
$$

$$
\Rightarrow \mathrm{AE}-\mathrm{AD}=\mathrm{BC}
$$

$$
\Rightarrow \quad \mathrm{AE}=2 \mathrm{BC} \quad \ldots(i)(\because \mathrm{BC}=\mathrm{AD})
$$

Now, in $\triangle \mathrm{LAE}$ and $\triangle \mathrm{LCB}$,
$\Rightarrow \quad \angle \mathrm{LAE}=\angle \mathrm{LCB} \quad$ (Alternate angles)
$\Rightarrow \quad \angle \mathrm{ALE}=\angle \mathrm{CLB}$
(Vertically opposite angles)
$\therefore \quad \triangle \mathrm{LAE} \sim \Delta \mathrm{LCB} \quad$ (AA criterion)

$$
\begin{array}{rlrl}
\Rightarrow & \frac{\mathrm{AE}}{\mathrm{BC}} & =\frac{\mathrm{LE}}{\mathrm{BL}}(\text { Corresponding sides }) \\
\Rightarrow & \frac{2 \mathrm{BC}}{\mathrm{BC}} & =\frac{\mathrm{EL}}{\mathrm{BL}} & \text { [Using equation }(i)] \\
\Rightarrow & \mathrm{EL} & =2 \mathrm{BL} . & \text { Hence proved. } \\
& & & \mathrm{OR}
\end{array}
$$

Hint:

As AD is median
so, $A B^{2}+A C^{2}=2\left(A D^{2}+B D^{2}\right)$
$\Rightarrow \quad \mathrm{AB}^{2}+\mathrm{AC}^{2}=2\left\{\mathrm{AD}^{2}+\frac{\mathrm{BC}^{2}}{4}\right\}$
$\Rightarrow 2\left(\mathrm{AB}^{2}+\mathrm{AC}^{2}\right)=4 \mathrm{AD}^{2}+\mathrm{BC}^{2}$
Similarly,

$$
\begin{align*}
2\left(\mathrm{AB}^{2}+\mathrm{BC}^{2}\right) & =4 \mathrm{BE}^{2}+\mathrm{AC}^{2} \tag{ii}\\
2\left(\mathrm{AC}^{2}+\mathrm{BC}^{2}\right) & =4 \mathrm{CF}^{2}+\mathrm{AB}^{2}
\end{align*}
$$

Add (i), (ii) and (iii),
$3\left(\mathrm{AB}^{2}+\mathrm{AC}^{2}+\mathrm{BC}^{2}\right)$

$$
=4\left(\mathrm{AD}^{2}+\mathrm{BE}^{2}+\mathrm{CF}^{2}\right)
$$

8. See Worksheet-91, Sol. 9 (1st part).

2nd Part: Draw EM || AB
M is a point on $C B$
$\therefore \quad \mathrm{EM} \| \mathrm{AB}$

In $\triangle \mathrm{ABC}$,

$$
\begin{equation*}
\Rightarrow \quad \frac{\mathrm{CE}}{\mathrm{AE}}=\frac{\mathrm{CM}}{\mathrm{MB}} \tag{i}
\end{equation*}
$$

Also in $\triangle B C D$,

$$
\begin{equation*}
\frac{D E}{E B}=\frac{C M}{M B} \tag{ii}
\end{equation*}
$$

From (i) and (ii),

$$
\frac{C E}{\mathrm{AE}}=\frac{\mathrm{DE}}{\mathrm{~EB}} .
$$

WORKSHEET - 93

1. $\mathrm{BE}^{2}=\frac{3}{4} a^{2} \Rightarrow a^{2}=\frac{4}{3} \mathrm{BE}^{2}$

$$
\therefore \quad \mathrm{AB}^{2}+\mathrm{BC}^{2}+\mathrm{CA}^{2}
$$

$$
=a^{2}+a^{2}+a^{2}
$$

$$
=3 a^{2}
$$

$$
=3 \times\left(\frac{4}{3} \mathrm{BE}^{2}\right)=4 \mathrm{BE}^{2} .
$$

2. $\frac{60}{13} \mathrm{~cm}$

Hint: Use Pythagoras Theorem.
3. $x=4$

Hint: Use Basic Proportionality Theorem.
4. Hint: In $\triangle A C D$ and $\triangle A B C$,

$$
\begin{array}{rlrl}
\angle \mathrm{A} & =\angle \mathrm{A} \\
& & \angle \mathrm{ADC} & =\angle \mathrm{ACB}=90^{\circ} \\
\Rightarrow & \triangle \mathrm{ACD} & \sim \Delta \mathrm{ABC} \\
\Rightarrow & & \mathrm{AC}^{2} & =\mathrm{AB} \cdot \mathrm{AD} \\
& & \triangle \mathrm{BCD}^{2} & \sim \Delta \mathrm{BAC} \\
\Rightarrow & \mathrm{BC}^{2} & =\mathrm{BA} \cdot \mathrm{BD} \tag{ii}
\end{array}
$$

\therefore Applying $(i i) \div(i)$ gives the result.
5. Let the given parallelogram be ABCD We need to prove that

$$
\mathrm{AC}^{2}+\mathrm{BD}^{2}=\mathrm{AB}^{2}+\mathrm{BC}^{2}+\mathrm{CD}^{2}+\mathrm{DA}^{2}
$$

Let us draw perpendiculars $D N$ on $A B$ and CM on AB produced as shown in figure.

In $\triangle \mathrm{BMC}$ and $\triangle \mathrm{AND}$,

$$
\begin{array}{rlr}
\mathrm{BC} & =\mathrm{AD}\left(\text { Opposite sides of a } \| \mathrm{gm}^{\mathrm{gm}}\right) \\
\angle \mathrm{BMC} & =\angle \mathrm{AND} & \left(\text { Each } 90^{\circ}\right) \\
\mathrm{CM} & =\mathrm{DN} & (\text { Distance between } \\
& & \\
\therefore & & \text { same parallels) } \\
\Rightarrow & \Delta \mathrm{BMC} & \cong \triangle \mathrm{AND} \\
& \text { (RHS criterion) } \\
\mathrm{BM} & =\mathrm{AN} & \ldots(\text { (i) }(\mathrm{CPCT}) \tag{i}
\end{array}
$$

In right triangle ACM ,

$$
\begin{align*}
\mathrm{AC}^{2} & =\mathrm{AM}^{2}+\mathrm{CM}^{2} \\
& =(\mathrm{AB}+\mathrm{BM})^{2}+\mathrm{BC}^{2}-\mathrm{BM}^{2} \\
& =\mathrm{AB}^{2}+2 \mathrm{AB} \cdot \mathrm{BM}+\mathrm{BM}^{2} \\
& +\mathrm{BC}^{2}-\mathrm{BM}^{2} \\
& =\mathrm{AB}^{2}+\mathrm{BC}^{2}+2 \mathrm{AB} \cdot \mathrm{BM} \ldots(i i) \tag{ii}
\end{align*}
$$

In right triangle BDN ,

$$
\begin{align*}
\mathrm{BD}^{2}= & \mathrm{BN}^{2}+\mathrm{DN}^{2} \\
& =(\mathrm{AB}-\mathrm{AN})^{2}+\left(\mathrm{AD}^{2}-\mathrm{AN}^{2}\right) \\
& =\mathrm{AB}^{2}-2 \mathrm{AB} \cdot \mathrm{AN}+\mathrm{AN}^{2} \\
& +\mathrm{AD}^{2}-\mathrm{AN}^{2} \\
\Rightarrow \quad \mathrm{BD}^{2}= & \mathrm{AB}^{2}+\mathrm{DA}^{2}-2 \mathrm{AB} \cdot \mathrm{AN} \\
\Rightarrow \quad \mathrm{BD}^{2}= & \mathrm{CD}^{2}+\mathrm{DA}^{2}-2 \mathrm{AB} \cdot \mathrm{BM} \quad \ldots(\text { iii }) \tag{iii}\\
& {[\mathrm{Using}(\text { i }) \text { and } \mathrm{AB}=\mathrm{CD}] }
\end{align*}
$$ Adding equations (ii) and (iii), we have

$$
\mathrm{AC}^{2}+\mathrm{BD}^{2}=\mathrm{AB}^{2}+\mathrm{BC}^{2}+\mathrm{CD}^{2}+\mathrm{DA}^{2}
$$

Hence proved.
6. Hint: AP || QB || RC

Use Basic Proportionality Theorem.
7. (i)

$$
\mathrm{PQ}^{2}=\mathrm{PR}^{2}+\mathrm{QR}^{2}
$$

$$
\Rightarrow \quad(26)^{2}=(2 x)^{2}+\{2(x+7)\}^{2}
$$

$$
\Rightarrow \quad 676=4 x^{2}+4\left(x^{2}+49+14 x\right)
$$

$$
\Rightarrow \quad 676=4 x^{2}+4 x^{2}+196+56 x
$$

$$
\Rightarrow \quad 8 x^{2}+56 x-480=0
$$

$$
\Rightarrow \quad x^{2}+7 x-60=0
$$

$$
\Rightarrow \quad x^{2}+12 x-5 x-60=0
$$

$$
\Rightarrow x(x+12)-5(x+12)=0
$$

$$
\Rightarrow \quad(x-5)(x+12)=0
$$

$$
\Rightarrow \quad x=5 \text { or } x=-12 \text { (reject it) }
$$

$$
\Rightarrow \quad x=5
$$

$$
\therefore \quad \mathrm{PR}=2 \times 5=10 \mathrm{~km}
$$

$$
\mathrm{QR}=2(5+7)=24 \mathrm{~km}
$$

\therefore Before construction of the highway the distance travelled $=10+24=34 \mathrm{~km}$
After construction of the highway the distance travelled $=26 \mathrm{~km}$
\therefore Distance saved $=34-26=8 \mathrm{~km}$.
(ii) Pythagoras theorem
(iii) Yes: as it will save time and fuel. Ravi is innovative in his thoughts, so his rationality and social responsibility is reflected here.
8. Let $A B C$ be equilateral triangle

Such that $A B=B C=A C$

draw
$\mathrm{AD} \perp \mathrm{BC}$.
also let E be a point on $B C$ such that:

$$
\mathrm{BE}=\frac{1}{4} \mathrm{BC} .
$$

Now as $\triangle \mathrm{ADB}$ is a right-angled triangle
\therefore Using pythagoras theorem.

$$
\begin{gathered}
\mathrm{AB}^{2}=\mathrm{AD}^{2}+\mathrm{BD}^{2} \\
=\mathrm{AD}^{2}+\left(\frac{1}{2} \mathrm{BC}\right)^{2} \\
\quad(\because \mathrm{AD} \perp \mathrm{BC} \\
\left.\Rightarrow \mathrm{BD}=\mathrm{DC}=\frac{1}{2} \mathrm{BC}\right) \\
=A D^{2}+\frac{1}{4} \mathrm{BC}^{2} \\
=\mathrm{AD}^{2}+\frac{1}{4} \mathrm{AB}^{2} \\
\Rightarrow \quad \mathrm{AB}^{2}-\frac{1}{4} \mathrm{AB}^{2}=\mathrm{AD}^{2} \\
\Rightarrow \quad \frac{3}{4} \mathrm{AB}^{2}=\mathrm{AD}^{2} \\
\Rightarrow \quad 3 \mathrm{AB}^{2}=4 \mathrm{AD}^{2}
\end{gathered}
$$

$$
\begin{aligned}
&=4\left[\mathrm{AE}^{2}-\mathrm{ED}^{2}\right] \quad(\because \Delta \mathrm{ADE} \text { is } \mathrm{rt} \angle \Delta) \\
&=4\left[\mathrm{AE}^{2}-(\mathrm{BD}-\mathrm{BE})^{2}\right] \\
&=4\left[\mathrm{AE}^{2}-\left(\frac{1}{2} \mathrm{BC}-\frac{1}{4} \mathrm{BC}\right)^{2}\right] \\
& \quad\left(\because \mathrm{BD}=\frac{1}{2} \mathrm{BC}\right) \\
& 4\left[\mathrm{AE}^{2}-\left(\frac{1}{4} \mathrm{BC}\right)^{2}\right] \\
&= 4\left[\mathrm{AE}^{2}-\frac{1}{16} \mathrm{BC}^{2}\right] \\
&= 4 \mathrm{AE}^{2}-\frac{1}{4} \mathrm{BC}^{2} \\
&= 4 \mathrm{AE}^{2}-\frac{1}{4} \mathrm{AB}^{2} \\
& \Rightarrow 3 \mathrm{AB}^{2}+\frac{1}{4} \mathrm{AB}^{2}=4 \mathrm{AE}^{2} \\
& \quad(\because \mathrm{BC}=\mathrm{AB}) \\
& \Rightarrow \quad \frac{13 \mathrm{AB}^{2}}{4}=4 \mathrm{AE}^{2} \\
& \Rightarrow \quad 13 \mathrm{AB}^{2}=16 \mathrm{AE}^{2} \\
& 16 \mathrm{AE}^{2}=13 \mathrm{AB}^{2} \text { Hence Proved. }
\end{aligned}
$$

OR
$\triangle \mathrm{ABE}, \triangle \mathrm{ACE}$ and $\triangle \mathrm{ADE}$ are right angled triangles right angle at E each.
and $\mathrm{AD}^{2}=\mathrm{AE}^{2}+\mathrm{DE}^{2}$
Adding equations (i) and (ii), we get

$$
\begin{aligned}
\mathrm{AB}^{2}+\mathrm{AC}^{2}= & 2 \mathrm{AE}^{2}+\mathrm{BE}^{2}+\mathrm{CE}^{2} \\
= & 2 \mathrm{AE}^{2}+(\mathrm{BD}-\mathrm{DE})^{2}+\left(\mathrm{CD}+\mathrm{DE}^{2}\right. \\
= & 2 \mathrm{AE}^{2}+\mathrm{BD}^{2}-2 \mathrm{BD} \times \mathrm{DE}+\mathrm{DE}^{2} \\
+ & \mathrm{CD}^{2}+2 \mathrm{CD} \times \mathrm{DE}+\mathrm{DE}^{2} \\
= & 2 \mathrm{AE}^{2}+\mathrm{BD}^{2}-2 \mathrm{BD} \times \mathrm{DE}+\mathrm{DE}^{2} \\
& \quad+\mathrm{BD}^{2}+2 \mathrm{BD} \times \mathrm{DE}+\mathrm{DE}^{2} \\
& \quad(\because \mathrm{BD}=\mathrm{CD}) \\
= & 2 \mathrm{AE}^{2}+2 \mathrm{DE}^{2}+2 \mathrm{BD}^{2} \\
= & 2\left(\mathrm{AE}^{2}+\mathrm{DE}^{2}\right)+2\left(\frac{\mathrm{BC}}{2}\right)^{2} \\
& \quad(\mathrm{D} \text { is a mid-point of } \mathrm{BC}) \\
= & 2 \mathrm{AD}^{2}+\frac{1}{2} \mathrm{BC}^{2} \quad[\text { Using }(i i i)]
\end{aligned}
$$

Hence proved.

$$
\begin{align*}
& \therefore \quad \mathrm{AB}^{2}=\mathrm{AE}^{2}+\mathrm{BE}^{2} \tag{i}\\
& \mathrm{AC}^{2}=A E^{2}+\mathrm{CE}^{2} \tag{ii}
\end{align*}
$$

WORKSHEET-94

1. $\triangle \mathrm{ABC} \sim \triangle \mathrm{PQR}$

$$
\Rightarrow \quad \frac{\mathrm{AP}}{\mathrm{AO}}=\frac{10}{50}
$$

$$
\Rightarrow \quad h=\frac{50 \times 20}{10}=100 \mathrm{~m}
$$

2. The ratio of similar triangles is equal to the ratio of squares of their corresponding altitudes.

$$
\begin{array}{ll}
\therefore & \frac{100}{49}=\frac{5^{2}}{h^{2}} \Rightarrow h^{2}=\frac{25 \times 49}{100} \\
\Rightarrow & h=\sqrt{\frac{25 \times 49}{100}} \Rightarrow h=\frac{5 \times 7}{10}=3.5 \mathrm{~cm} .
\end{array}
$$

3. Altitude AM divides base $B C$ in two equal parts. That is $\mathrm{BM}=\mathrm{MC}=7 \mathrm{~cm}$. Using Pythagoras Theorem In right $\triangle \mathrm{ABM}$,

$$
\begin{aligned}
\mathrm{AM} & =\sqrt{25^{2}-7^{2}}=\sqrt{(25+7)(25-7)} \\
& =\sqrt{32 \times 18}=24 \mathrm{~cm}
\end{aligned}
$$

4. (i) We know that diagonal of a square

$$
\begin{equation*}
=\sqrt{2} \times \text { side } \tag{i}
\end{equation*}
$$

In square $\mathrm{AEFG}, \mathrm{AF}=\sqrt{2} \mathrm{AG}$
In square $A B C D, A C=\sqrt{2} A D$
Using equations (i) and (ii), we obtain

$$
\begin{equation*}
\frac{\mathrm{AF}}{\mathrm{AG}}=\frac{\mathrm{AC}}{\mathrm{AD}} \tag{iii}
\end{equation*}
$$

(ii) $\quad \angle \mathrm{GAF}=\angle \mathrm{DAC} \quad\left(\right.$ Each $\left.45^{\circ}\right)$
$\Rightarrow \quad \angle \mathrm{GAF}-\angle \mathrm{GAC}=\angle \mathrm{DAC}-\angle \mathrm{GAC}$
$\Rightarrow \quad \angle \mathrm{CAF}=\angle \mathrm{DAG}$
From equations (iii) and (iv), we have $\Delta \mathrm{ACF} \sim \Delta \mathrm{ADG}$.
(SAS criterion)
5. Hint: $\because \quad \angle 1=\angle 2$

$$
\therefore \quad P Q=P R
$$

$$
\therefore \frac{\mathrm{QR}}{\mathrm{QS}}=\frac{\mathrm{QT}}{\mathrm{PQ}}
$$

6. Hint: Draw $\mathrm{AM} \perp \mathrm{BC}$ and $\mathrm{DN} \perp \mathrm{BC}$.
7. Hint: Fig.

8. Hint: For 1st part: Prove Pythagoras Theorem.
For 2nd part: $A C^{2}-A B^{2}$

$$
=\left(\mathrm{AD}^{2}+\mathrm{CD}^{2}\right)-\left(\mathrm{AD}^{2}+\mathrm{BD}^{2}\right)
$$

9. Hint: Let the $\mathrm{DC}=\mathrm{AB}=x$

Then

$$
\mathrm{QC}=\frac{4}{5} x \text { and } \mathrm{AP}=\frac{3}{5} x
$$

$\Delta \mathrm{QRC} \sim \Delta \mathrm{PRA}$.
OR

See Worksheet-93, Sol. 5.

WORKSHEET - 96

1. (C) In $\triangle A B C, P Q| | B C$

$$
\begin{array}{ll}
& \therefore \\
& \frac{\sqrt{3}}{4} c^{2}=\frac{\mathrm{AQ}}{\mathrm{QC}} \\
& \therefore
\end{array} \frac{2.4}{\mathrm{BP}}=\frac{2}{3} \Rightarrow \mathrm{BP}=3.6 \mathrm{~cm} .
$$

2. $\frac{\operatorname{ar}(\triangle \mathrm{ABC})}{\operatorname{ar}(\triangle \mathrm{DEF})}=\frac{\mathrm{BC}^{2}}{\mathrm{EF}^{2}}$

$$
\begin{array}{ll}
\Rightarrow & \frac{9}{4} \\
\Rightarrow & =\left(\frac{\mathrm{BC}}{\mathrm{EF}}\right)^{2} \\
\Rightarrow & \frac{\mathrm{BC}}{\mathrm{EF}}
\end{array}=\frac{3}{2} .
$$

3. Draw $\mathrm{AM} \perp \mathrm{BC}$ and $\mathrm{DN} \perp \mathrm{BC}$
$\because \quad \angle \mathrm{AMO}=\angle \mathrm{DNO}=90^{\circ}$
and $\quad \angle \mathrm{AOM}=\angle \mathrm{DON}$

$$
\therefore \quad \triangle \mathrm{AMO} \sim \Delta \mathrm{DNO}
$$

(AA similarity)

$$
\begin{equation*}
\therefore \quad \frac{\mathrm{AM}}{\mathrm{DN}}=\frac{\mathrm{AO}}{\mathrm{DO}} \tag{i}
\end{equation*}
$$

$$
\text { Now, } \begin{aligned}
\frac{\operatorname{ar}(\triangle \mathrm{ABC})}{\operatorname{ar}(\triangle \mathrm{DBC})} & =\frac{\frac{1}{2} \times \mathrm{BC} \times \mathrm{AM}}{\frac{1}{2} \times \mathrm{BC} \times \mathrm{DN}} \\
& =\frac{\mathrm{AO}}{\mathrm{DO}} . \quad[\text { Using }(i)]
\end{aligned}
$$

Therefore $\frac{\operatorname{ar}(\triangle \mathrm{ABC})}{\operatorname{ar}(\triangle \mathrm{DBC})}=\frac{\mathrm{AO}}{\mathrm{DO}}$ Hence proved.
4. True, because $\triangle B C D \sim \triangle C A D$

$$
\Rightarrow \quad \mathrm{CD}^{2}=\mathrm{BD} \cdot \mathrm{AD}
$$

5. Hint: BMDN is a rectangle.

$$
\begin{gathered}
\Delta \mathrm{BMD} \sim \Delta \mathrm{DMC} \\
\Rightarrow \frac{\mathrm{DN}}{\mathrm{DM}}=\frac{\mathrm{DM}}{\mathrm{MC}} \Rightarrow \mathrm{DM}^{2}=\mathrm{DN} \times \mathrm{MC}
\end{gathered}
$$

Also, \triangle BND $\sim \Delta$ DNA.

$$
\Rightarrow \frac{\mathrm{DM}}{\mathrm{DN}}=\frac{\mathrm{DN}}{\mathrm{AN}} \Rightarrow \mathrm{DN}^{2}=\mathrm{DM} \times \mathrm{AN}
$$

6. Let $\mathrm{BE}=3 x$ and $\mathrm{EC}=4 x$.

In $\triangle \mathrm{BCD}, \mathrm{GE} \| \mathrm{DC}$

$$
\begin{array}{lrl}
\text { In } \triangle \mathrm{BCD}, \mathrm{GE} \| \mathrm{DC} \\
\therefore & \Delta \mathrm{BGE} \sim \Delta \mathrm{BDC} \\
\therefore & \frac{\mathrm{BE}}{\mathrm{BC}}=\frac{\mathrm{GE}}{\mathrm{DC}} & \mathrm{D} \\
\Rightarrow & \frac{3 x}{3 x+4 x}=\frac{\mathrm{GE}}{2 \mathrm{AB}} & (\therefore \mathrm{DC}=2 \mathrm{AB}) \tag{i}\\
\Rightarrow & \mathrm{GE}=\frac{6}{7} \mathrm{AB} & \ldots(i)
\end{array}
$$

Similarly, \triangle DGF $\sim \Delta$ DBA

$$
\begin{equation*}
\Rightarrow \quad \frac{\mathrm{FG}}{\mathrm{AB}}=\frac{4}{7} \Rightarrow \mathrm{FG}=\frac{4}{7} \mathrm{AB} \tag{ii}
\end{equation*}
$$

Adding equations (i) and (ii), we get

$$
\begin{array}{rlrl}
& \mathrm{GE}+\mathrm{FG} & =\frac{6}{7} \mathrm{AB}+\frac{4}{7} \mathrm{AB} \\
\Rightarrow \quad & \mathrm{EF} & =\frac{10}{7} \mathrm{AB} \\
\Rightarrow \quad 7 \mathrm{EF} & =10 \mathrm{AB} . \quad \text { Hence proved. }
\end{array}
$$

7. See Worksheet-91, Sol. 9 (1st part).
8. We are given two triangles $A B C$ and $P Q R$ such that $\triangle \mathrm{ABC} \sim \triangle \mathrm{PQR}$.
Draw perpendiculars $A D$ and $P M$ on $B C$ and QR respectively.

We need to prove

$$
\frac{\operatorname{ar}(\triangle \mathrm{ABC})}{\operatorname{ar}(\triangle \mathrm{PQR})}=\frac{\mathrm{AD}^{2}}{\mathrm{PM}^{2}}
$$

In $\triangle \mathrm{ABD}$ and $\triangle \mathrm{PQM}$,

$$
\begin{aligned}
\angle \mathrm{ADB} & =\angle \mathrm{PMQ}=90^{\circ} \\
& \angle \mathrm{ABD}=\angle \mathrm{PQM}(\because \Delta \mathrm{ABC} \sim \Delta \mathrm{PQR}) \\
\therefore \quad \triangle \mathrm{ABD} & \sim \Delta \mathrm{PQM}
\end{aligned}
$$

(AA criterion of similarity)

$$
\begin{equation*}
\Rightarrow \quad \frac{\mathrm{AB}}{\mathrm{PQ}}=\frac{\mathrm{AD}}{\mathrm{PM}} \tag{i}
\end{equation*}
$$

(Corresponding sides)
We know that the ratio of areas of two similar triangles is equal to ratio of squares of their corresponding sides

$$
\begin{equation*}
\therefore \frac{\operatorname{ar}(\triangle \mathrm{ABC})}{\operatorname{ar}(\triangle \mathrm{PQR})}=\frac{\mathrm{AB}^{2}}{\mathrm{PQ}^{2}} \tag{ii}
\end{equation*}
$$

From equations (i) and (ii), we have

$$
\frac{\operatorname{ar}(\triangle \mathrm{ABC})}{\operatorname{ar}(\triangle \mathrm{PQR})}=\frac{\mathrm{AD}^{2}}{\mathrm{PM}^{2}} . \quad \text { Hence proved. }
$$

CHAPTER TEST

1. $\mathrm{BC}=\sqrt{5^{2}+12^{2}}=13 \mathrm{~cm}$

$\triangle \mathrm{ABD} \sim \triangle \mathrm{CBA}$
$\Rightarrow \frac{\mathrm{AB}}{\mathrm{BC}}=\frac{\mathrm{AD}}{\mathrm{AC}}$
$\Rightarrow \mathrm{AD}=\frac{5 \times 12}{13}=\frac{60}{13} \mathrm{~cm}$.
2. $\frac{\Delta_{1}}{\Delta_{2}}=\frac{\mathrm{P}_{1}^{2}}{\mathrm{P}_{2}^{2}}=\frac{40^{2}}{50^{2}}=\frac{16}{25}$
$\Rightarrow \Delta_{1}: \Delta_{2}=16: 25$.
3. $\frac{\mathrm{AD}}{\mathrm{DB}}=\frac{\mathrm{AE}}{\mathrm{EC}}$
$\Rightarrow \quad \frac{1.5}{3}=\frac{1}{\mathrm{EC}}$
$\Rightarrow \quad \mathrm{EC}=\frac{3}{1.5}=2 \mathrm{~cm}$.
4. Yes.

$$
\begin{aligned}
\mathrm{MQ} & =\mathrm{PQ}-\mathrm{PM} \\
& =15.2-5.7=9.5 \mathrm{~cm} \\
\mathrm{NR} & =\mathrm{PR}-\mathrm{PN} \\
& =12.8-4.8=8 \mathrm{~cm}
\end{aligned}
$$

Now, $\quad \frac{\mathrm{PM}}{\mathrm{MQ}}=\frac{5.7}{9.5}=0.6$
and $\quad \frac{\mathrm{PN}}{\mathrm{NR}}=\frac{4.8}{8}=0.6$
Clearly, $\frac{\mathrm{PM}}{\mathrm{MQ}}=\frac{\mathrm{PN}}{\mathrm{NR}}$
$\Rightarrow \quad \mathrm{MN} \| \mathrm{QR}$.
5. $\triangle \mathrm{AOB} \sim \triangle \mathrm{COD} \quad$ (AAA criterion of similarity)
$\Rightarrow \quad \frac{\mathrm{AO}}{\mathrm{CO}}=\frac{\mathrm{BO}}{\mathrm{DO}}$
(Corresponding sides)
$\Rightarrow \quad \frac{7 x-9}{2 x-1}=\frac{9 x-8}{3 x}$
$\Rightarrow \quad 21 x^{2}-27 x=18 x^{2}-16 x-9 x+8$
$\Rightarrow 3 x^{2}-2 x-8=0 \Rightarrow(x-2)(3 x+4)$
$\Rightarrow \quad x=2$ or $x=-\frac{4}{3}$
$\Rightarrow \quad x=2 . \quad$ (Negative value rejected)
6. $\therefore \quad \triangle \mathrm{ABE} \cong \triangle \mathrm{ACD}$
$\therefore \quad \mathrm{AB}=\mathrm{AC}$ and $\mathrm{AE}=\mathrm{AD}(\mathrm{CPCT})$
Consider $\mathrm{AB}=\mathrm{AC}$
$\Rightarrow \mathrm{AD}+\mathrm{DB}=\mathrm{AE}+\mathrm{EC}$
$\Rightarrow \quad \mathrm{DB}=\mathrm{EC} \quad \ldots(i)(\because \mathrm{AE}=\mathrm{AD})$
Also $\quad \mathrm{AD}=\mathrm{AE}$
(Proved above)
Dividing equation (ii) by equation (i), we have

$$
\begin{equation*}
\frac{\mathrm{AD}}{\mathrm{DB}}=\frac{\mathrm{AE}}{\mathrm{EC}} \tag{iii}
\end{equation*}
$$

Hence, in $\triangle \mathrm{ABC}$

$$
\frac{\mathrm{AD}}{\mathrm{DB}}=\frac{\mathrm{AE}}{\mathrm{EC}}
$$

$\Rightarrow \quad \mathrm{DE} \| \mathrm{BC} \quad$ (Converse of Basic
Proportionality Theorem)
$\Rightarrow \quad \angle \mathrm{ADE}=\angle \mathrm{ABC}$ and $\angle \mathrm{AED}=\angle \mathrm{ACB}$
$\Rightarrow \quad \triangle \mathrm{ADE} \sim \triangle \mathrm{ABC}$.
7. Hint:
$\Delta \mathrm{PAC} \sim \Delta \mathrm{QBC} \Rightarrow \frac{x}{z}=\frac{\mathrm{AC}}{\mathrm{BC}}$
$\Delta \mathrm{RCA} \sim \Delta \mathrm{QBA} \Rightarrow \frac{y}{z}=\frac{\mathrm{AC}}{\mathrm{AB}}$.
8. Hint:

Draw MN || AD, passing through O to intersect $A B$ at M and $D C$ at N.

Use Pythagoras Theorem for $\triangle \mathrm{AOM}$, $\triangle B O M, \triangle C O N$ and $\triangle D O N$.
9. (i) As DE || BC.

$\therefore \quad \angle 1=\angle 2 \quad$ (Corresponding angles)
(Common)
$\Rightarrow \quad \triangle \mathrm{ADE} \sim \triangle \mathrm{ABC} \quad$ (AA-criterion)
(ii) As $\triangle \mathrm{ADE} \sim \triangle \mathrm{ABC}$

$$
\therefore \frac{\operatorname{ar}(\triangle \mathrm{ADE})}{\operatorname{ar}(\triangle \mathrm{ABC})}=\frac{(\mathrm{AD})^{2}}{(\mathrm{AB})^{2}} \Rightarrow \frac{1}{2}=\frac{(\mathrm{AD})^{2}}{(\mathrm{AB})^{2}}
$$

$$
[\because \operatorname{ar}(\triangle \mathrm{ADE})=\operatorname{ar}(\mathrm{DECB}) \Rightarrow 2 \operatorname{ar}(\triangle \mathrm{ADE})=
$$

$$
\operatorname{ar}(\mathrm{DECB})+\operatorname{ar}(\triangle \mathrm{ADE}) \Rightarrow 2 \operatorname{ar}(\triangle \mathrm{ADE})=
$$

$$
\left.\operatorname{ar}(\triangle \mathrm{ABC}) \Rightarrow \frac{\operatorname{ar}(\triangle \mathrm{ADE})}{\operatorname{ar}(\triangle \mathrm{ABC})}=\frac{1}{2}\right]
$$

$$
\begin{aligned}
& \Rightarrow \quad \frac{1}{\sqrt{2}}=\frac{\mathrm{AD}}{\mathrm{AB}} \Rightarrow \frac{1}{\sqrt{2}}-1=\frac{\mathrm{AD}}{\mathrm{AB}}-1 \\
& \begin{aligned}
\Rightarrow & \frac{1-\sqrt{2}}{\sqrt{2}}=\frac{\mathrm{AD}-\mathrm{AB}}{\mathrm{AB}} \\
& =-\left(\frac{\mathrm{AB}-\mathrm{AD}}{\mathrm{AB}}\right)=-\frac{\mathrm{BD}}{\mathrm{AB}} \\
\Rightarrow & \frac{\mathrm{BD}}{\mathrm{AB}}=\frac{\sqrt{2}-1}{\sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}}=\frac{2-\sqrt{2}}{2}
\end{aligned}
\end{aligned}
$$

Hence proved.
(iii) Concept of similarity of two triangles.
(iv) Honesty and rationality to divide his land equally between his two children.
\square

\# Chapter
 10 CIRCles

WORKSHEET-98

1. $B C=B Q+Q C$
as $\mathrm{BQ}=\mathrm{BP}=3 \mathrm{~cm}$
and $\quad \mathrm{QC}=\mathrm{RC}=\mathrm{AC}-\mathrm{AR}$

$$
\begin{aligned}
& =11-\mathrm{AP} \quad\{\because \mathrm{AR}=\mathrm{AP}\} \\
& =11-4=7 \mathrm{~cm}
\end{aligned}
$$

$\therefore \quad B C=3+7=10 \mathrm{~cm}$.
2. Join OT and OQ.

As $\quad \mathrm{OT}=\mathrm{OQ}=$ radius
$\therefore \quad \angle \mathrm{TOQ}=180^{\circ}-70^{\circ}=110^{\circ}$
$\therefore \quad \angle \mathrm{TRQ}=\frac{1}{2} \times \angle \mathrm{TOQ}=\frac{1}{2} \times 110^{\circ}=55^{\circ}$.
3. As AB || PR

$$
\Rightarrow \quad \angle \mathrm{BQR}=\angle \mathrm{ABQ}=70^{\circ}
$$

Also $\angle \mathrm{ABQ}=\angle \mathrm{BAQ}=70^{\circ}$

$$
\{\because \Delta \mathrm{AMQ} \cong \Delta \mathrm{BMQ}\}
$$

\therefore In $\triangle A Q B$, using Angle sum property $\angle \mathrm{AQB}=180^{\circ}-70^{\circ}-70^{\circ}=40^{\circ}$.

4. False

Perimeter of $\triangle A B C=A B+B C+A C$
$=A B+B Q+C Q+C R+A R$
$=A B+B P+C Q+C Q+A P$
$=A B+(B P+A P)+2 C Q$
$=2(\mathrm{AB}+\mathrm{CQ})$
$=2(8)=16 \mathrm{~cm}$.

5. LHS
$=A B+C D$
$=(A P+P B)+(C R+R D)$
$=A S+B Q+C Q+D S$
$=(A S+D S)+(B Q+C Q)$
$=A D+B C$
$=$ RHS.

6. See solved example 4.
7. $\mathrm{AB}=13 \mathrm{~cm}, \mathrm{AC}=15 \mathrm{~cm}$ Hint:
Use
$\operatorname{ar}(\Delta \mathrm{OBC}+\Delta \mathrm{OAC}+\Delta \mathrm{OAB})$

$$
=\operatorname{ar}(\triangle \mathrm{ABC}) .
$$

8. Hint: Join $A B$

Let $\mathrm{OA}=r \Rightarrow \mathrm{OP}=2 r$
In \triangle OAP,
$\sin \theta=\frac{\mathrm{OA}}{\mathrm{OP}}=\frac{r}{2 r}=\frac{1}{2}$

$$
\theta=30^{\circ}
$$

$\therefore \quad \angle \mathrm{APB}=2 \times 30^{\circ}=60^{\circ}$
In $\triangle \mathrm{ABP}, \mathrm{AP}=\mathrm{BP}$

$$
\therefore \angle \mathrm{A}=\angle \mathrm{B}
$$

But, $\angle \mathrm{A}+\angle \mathrm{B}=180^{\circ}-\angle \mathrm{APB}=120^{\circ}$
$\Rightarrow \quad \angle \mathrm{A}=\angle \mathrm{B}=60^{\circ}$
$\therefore \triangle \mathrm{APB}$ is an equilateral triangle.
WORKSHEET-99

1. As $\angle \mathrm{OQP}=90^{\circ}$
$\therefore x=90^{\circ}-30^{\circ}=60^{\circ}$.

2. $\angle \mathrm{QOR}=180^{\circ}-30^{\circ}=150^{\circ}$

$\angle \mathrm{PRQ}=\frac{1}{2} \times 150^{\circ}=75^{\circ}$.
3. $\mathrm{BC}=\mathrm{BP}+\mathrm{PC}$

$$
\begin{aligned}
& =\mathrm{BR}+\mathrm{CQ} \\
& =3+[\mathrm{AC}-\mathrm{AQ}] \\
& =3+[11-4] \\
& =10 \mathrm{~cm} .
\end{aligned}
$$

4. True.

Let M be the point of contact and O be the centre of the circle.

$$
\begin{aligned}
& \angle \mathrm{ABM}=\angle \mathrm{ACM} \\
&(\because \mathrm{AB}=\mathrm{AC}) \\
& \frac{1}{2} \angle \mathrm{ABM}=\frac{1}{2} \angle \mathrm{ACM} \\
& \angle \mathrm{OBM}=\angle \mathrm{OCM} \\
& \angle \mathrm{BMO}=\angle \mathrm{CMO} \\
& \mathrm{OM}=\mathrm{OM}
\end{aligned}
$$

$$
\text { ...(ii) (Each } 90^{\circ} \text {) }
$$

Using equations (i), (ii) and (iii) in $\Delta \mathrm{BMO}$ and $\triangle \mathrm{CMO}$, we have

$$
\begin{array}{rlrl}
\Delta \mathrm{BMO} & \cong \Delta \mathrm{CMO} \\
& \therefore & \mathrm{BM} & =\mathrm{CM}
\end{array}
$$

(AAS corollory)
(CPCT)
$\Rightarrow \mathrm{BC}$ is bisected at the point of contact.
5. Let $A B$ and $C D$ be two parallel tangents to a circle with centre O.

Join OP and OQ.
Draw OX parallel PB
 and QD.

$$
\Rightarrow \quad \angle \mathrm{BPO}+\angle \mathrm{XOP}=180^{\circ}
$$

[Sum of the angles on the same side of a transversal is 180°]

$$
\Rightarrow \quad 90^{\circ}+\angle X O P=180^{\circ}
$$

$[\therefore \angle \mathrm{BPO}=$ angle between a tangent and radius $=90^{\circ}$]
$\Rightarrow \quad \angle \mathrm{XOP}=90^{\circ}$
Similarly, $\quad \angle \mathrm{XOQ}=90^{\circ}$
$\therefore \quad \angle \mathrm{XOP}+\angle \mathrm{XOQ}=90^{\circ}+90^{\circ}=180^{\circ}$
Hence, POQ is a straight line passing through O .
6. 11 cm

Hint: OQBP is a square
$\therefore \quad \mathrm{OQ}=\mathrm{BP}=11 \mathrm{~cm}$.

7. Let the tangents be PQ and $P R$ corresponding to the chord QR of the circle with centre O .
Join OQ, OR and OP. In $\triangle \mathrm{PQO}$ and $\triangle \mathrm{PRO}$, $\angle \mathrm{PQO}=\angle \mathrm{PRO}=90^{\circ}$
(Angles formed between tangent and corresponding radius)

$$
\begin{aligned}
& \mathrm{PO}=\mathrm{PO} \\
& \mathrm{QO}=\mathrm{RO}
\end{aligned}
$$

$$
\mathrm{QO}=\mathrm{RO} \quad \text { (Radii of same circle) }
$$

Therefore, we arrive at $\Delta \mathrm{PQO} \cong \Delta \mathrm{PRO}$ (RHS axiom of congruence) So, $P Q=P R$
Thus, $\triangle \mathrm{PQR}$ is an isosceles triangle.
$\therefore \angle \mathrm{PQR}=\angle \mathrm{PRQ}$.
Hence proved.
8. Let the given parallelogram be ABCD whose sides touches a circles at P, Q, R and S as shown in the adjoining figure.
Since, length of two
 tangents drawn from an external point to a circle are equal.
$\therefore \quad \mathrm{AP}=\mathrm{AS}$
Similarly, we have

$$
\begin{align*}
\mathrm{PB} & =\mathrm{BQ} \tag{ii}\\
\mathrm{DR} & =\mathrm{SD} \tag{iii}\\
\mathrm{RC} & =\mathrm{QC} \tag{iv}
\end{align*}
$$

Adding these four equations, we have
$A P+P B+D R+R C=A S+B Q+S D+Q C$
$\Rightarrow(\mathrm{AP}+\mathrm{PB})+(\mathrm{DR}+\mathrm{RC})$

$$
=(\mathrm{AS}+\mathrm{SD})+(\mathrm{BQ}+\mathrm{QC})
$$

$\Rightarrow \quad \mathrm{AB}+\mathrm{DC}=\mathrm{AD}+\mathrm{BC}$
$\because \quad A B=D C$ and $A D=B C$
(ABCD is a parallelogram)
$\therefore \quad \mathrm{AB}=\mathrm{BC}$
Thus, $\mathrm{AB}=\mathrm{BC}=\mathrm{CD}=\mathrm{DA}$
Hence, ABCD is a rhombus.
9. Let line l be the tangent at a point P to the circle with centre O. Let us take any point Q on
 the tangent l as shown in the figure.

Join OQ to meet the circle at M.
We know that if a point is met with the different points of a line, then the shortest line segment is the perpendicular on that line. Consider the adjoining figure:
$\mathrm{OM}=\mathrm{OP} \quad$ (Radii of same circle)

$$
O Q=O M+M Q
$$

$\Rightarrow \quad \mathrm{OQ}=\mathrm{OP}+\mathrm{MQ}$
$\Rightarrow \quad \mathrm{OQ}>\mathrm{OP}$
i.e., $\quad \mathrm{OP}<\mathrm{OQ}$

Clearly, OP is the shorter than OQ. Similarly, we can prove that OP is the shortest all OV, V being a variable point on the line other than P. Therefore, OP is the perpendicular to line l.
Hence, tangent $l \perp$ radius OP.
2nd Part: Join OY

$$
\angle \mathrm{OYX}=90^{\circ}
$$

and $\quad \angle \mathrm{OAY}=b+a=\angle \mathrm{OYA}$

$$
[\because \mathrm{OA}=\mathrm{OY}=\text { radius }]
$$

$\Rightarrow \quad b+a=90^{\circ}-a$
$\Rightarrow \quad b+2 a=90^{\circ}$.

WORKSHEET- 100

1. $\angle \mathrm{Q}=\angle \mathrm{R}=90^{\circ}$

In quadrilateral PQOR ,

$$
\angle \mathrm{P}=360^{\circ}-\left(90^{\circ}+130^{\circ}+90^{\circ}\right)=50^{\circ}
$$

2. Join $C A$ and $C B$
as $\mathrm{CA} \perp \mathrm{AP}$
$\mathrm{CB} \perp \mathrm{PB}$
and $\mathrm{AP} \perp \mathrm{PB} \Rightarrow \mathrm{CA} \perp \mathrm{CB}$
$\therefore \mathrm{CA}=\mathrm{CB}$ and $\mathrm{AP}=\mathrm{PB}$
\Rightarrow CAPB is a square
$\therefore \mathrm{AP}=\mathrm{PB}=\mathrm{CA}=\mathrm{CB}=4 \mathrm{~cm}$
3. Hint: $\mathrm{AC}=10 \mathrm{~cm}$

$$
\begin{aligned}
& \therefore \operatorname{ar}(\triangle \mathrm{ABC}) \\
& =\operatorname{ar}(\triangle \mathrm{AOB})+\operatorname{ar}(\triangle \mathrm{BOC})+\operatorname{ar}(\triangle \mathrm{AOC})
\end{aligned}
$$

$$
\begin{aligned}
\Rightarrow & 24 & =\frac{1}{2} \times(8 \times r+6 \times r+10 \times r) \\
\Rightarrow & 48 & =r \times 24 \\
\Rightarrow & r & =2 \mathrm{~cm} .
\end{aligned}
$$

4. $\quad \mathrm{CP}=\mathrm{CQ}=11 \mathrm{~cm}$

$$
\begin{aligned}
B Q & =C Q-C B \\
& =11-7=4 \mathrm{~cm}
\end{aligned}
$$

$\therefore \quad B R=Q B=4 \mathrm{~cm}$.

5. Hint: $\quad X P=X Q$
$\Rightarrow X A+A P=X B+B Q$
$\Rightarrow X A+A R=X B+B R$

$$
\left\{\begin{array}{rl}
\because \quad \mathrm{AP} & =\mathrm{AR} \\
\text { and } \mathrm{BQ} & =\mathrm{BR}
\end{array} .\right.
$$

6. See Worksheet-99, Sol. 8.
7. Hint:

(CPCT)

Similarly,

$$
\begin{aligned}
& \angle \mathrm{CBQ} & =2 \angle \mathrm{CBO} \\
\text { As } & \angle \mathrm{PAC}+\angle \mathrm{CBQ} & =180^{\circ} \\
\Rightarrow & \frac{1}{2} \angle \mathrm{PAC}+\frac{1}{2} \angle \mathrm{CBQ} & =\frac{1}{2} \times 180^{\circ} \\
\Rightarrow & \angle \mathrm{CAO}+\angle \mathrm{CBO} & =90^{\circ} \\
\therefore & \angle \mathrm{AOB} & =90^{\circ} .
\end{aligned}
$$

8. (i) $\mathrm{PA} \cdot \mathrm{PB}=(\mathrm{PN}-\mathrm{AN})(\mathrm{PN}+\mathrm{BN})$

$$
=(\mathrm{PN}-\mathrm{AN})(\mathrm{PN}+\mathrm{AN})
$$

(As AN = BN)
$=\mathrm{PN}^{2}=\mathrm{AN}^{2}$
(ii) $\mathrm{PN}^{2}-\mathrm{AN}^{2}=\left(\mathrm{OP}^{2}-\mathrm{ON}^{2}\right)-\mathrm{AN}^{2}$
(As ON $\perp \mathrm{PN}$)
$=\mathrm{OP}^{2}-\left(\mathrm{ON}^{2}+\mathrm{AN}^{2}\right)$
$=\mathrm{PO}^{2}=\mathrm{OA}^{2} \quad($ As ON $\perp \mathrm{AN})$
$=\mathrm{OP}^{2}-\mathrm{OT}^{2} \quad(\mathrm{As} \mathrm{OA}=\mathrm{OT})$
(iii) From (i) and (ii)

$$
\begin{aligned}
\mathrm{PA} \cdot \mathrm{~PB} & =\mathrm{OP}^{2}-\mathrm{OT}^{2} \\
& =\mathrm{PT}^{2} \quad\left(\mathrm{As} \angle \mathrm{OTP}=90^{\circ}\right)
\end{aligned}
$$

WORKSHEET - 101

1. Let P is point of contact as $\mathrm{OP} \perp \mathrm{AB}$.

$$
\begin{array}{rlrl}
\text { and } & \mathrm{OP} & =b, \mathrm{OB}=a \\
\Rightarrow & \mathrm{OB}^{2} & =\mathrm{OP}^{2}+\mathrm{BP}^{2} \\
& & a^{2} & =b^{2}+\mathrm{BP}^{2} \\
& \mathrm{BP}^{2} & =a^{2}-b^{2} \\
& \mathrm{BP} & =\sqrt{a^{2}-b^{2}}
\end{array}
$$

$$
\therefore \quad \mathrm{AB}=2 \mathrm{BP}=2 \sqrt{a^{2}-b^{2}} .
$$

2. $\angle \mathrm{QOR}=180^{\circ}-46^{\circ}=134^{\circ}$

3. False.

$$
\begin{aligned}
\because & \angle \mathrm{OQL} & =90^{\circ} \\
\therefore & \angle \mathrm{OQS}=90^{\circ}-\angle \mathrm{SQL} & =40^{\circ}
\end{aligned}
$$

Similarly,
$\angle \mathrm{ORS}=90^{\circ}-\angle \mathrm{SRM}=30^{\circ}$

$\because \quad$ In $\triangle \mathrm{SOQ}, \angle \mathrm{OSQ}=\angle \mathrm{OQS}=40^{\circ}$
And in $\triangle \mathrm{SOR}, \angle \mathrm{OSR}=\angle \mathrm{ORS}=30^{\circ}$

$$
\begin{aligned}
\therefore \quad \angle \mathrm{QSR} & =\mathrm{OSQ}+\angle \mathrm{OSR} \\
& =40^{\circ}+30^{\circ}=70^{\circ} .
\end{aligned}
$$

4. Perimeter of $\triangle A B C$
$=A B+B C+A C$
$=(A Q-B Q)+B C+(A R-C R)$
$=A Q+A R+B C-(B P+P C)$
$=2 \mathrm{AQ} \quad[\because \mathrm{AQ}=\mathrm{AR}]$

$\therefore \mathrm{AQ}=\mathrm{AR}=\frac{1}{2}$ (Perimeter of $\triangle \mathrm{ABC}$).
5. Join OT and let OT intersect PQ at M.

$\therefore \quad$ In $\triangle \mathrm{PMT}$ and $\triangle \mathrm{QMT}$,

$$
\mathrm{PT}=\mathrm{QT}
$$

(\because Lengths of tangent from an external point to a circle are equal) $\mathrm{TM}=\mathrm{TM}$
(Common)

$$
\angle \mathrm{PTM}=\angle \mathrm{QTM}
$$

(\because Tangents are equally inclined to line joining external point to circle)
$\therefore \quad \triangle \mathrm{PMT} \cong \triangle \mathrm{QMT}$
(SAS)

$$
\begin{array}{ll}
\Rightarrow & \mathrm{PM}=\mathrm{MQ}=\frac{1}{2} \mathrm{PQ} \\
\Rightarrow & \mathrm{PM}=\frac{1}{2} \times 8=4 \mathrm{~cm}
\end{array}
$$

Also, $\mathrm{OM} \perp \mathrm{PQ}$
$\Rightarrow \quad \angle \mathrm{TMP}=90^{\circ}$.

$$
\begin{array}{ll}
\text { Let } & \angle \text { PTM }
\end{array}=\theta= \begin{cases}\therefore & \tag{i}\\
\therefore \text { TPM } & =90-\theta\end{cases}
$$

...(ii) $\left\{\because \angle \mathrm{TMP}=90^{\circ}\right\}$
Also, In right $\triangle \mathrm{PMO}$,

$$
\begin{align*}
& \angle \mathrm{OPM} & =\theta \tag{iii}\\
\therefore & \angle \mathrm{POM} & =90-\theta \tag{iv}
\end{align*}
$$

$\therefore \quad$ In $\triangle \mathrm{POM}$ and $\triangle \mathrm{TPM}$,

$$
\angle \mathrm{PTM}=\angle \mathrm{MPO}=\theta
$$

(From (i) and (iii))
and $\quad \angle \mathrm{TPM}=\angle \mathrm{POM}=90-\theta$
(From (ii) and (iv))

$$
\Rightarrow \quad \Delta \mathrm{POM} \sim \Delta \mathrm{TPM}
$$

$$
\Rightarrow \quad \frac{\mathrm{PO}}{\mathrm{TP}}=\frac{\mathrm{OM}}{\mathrm{PM}}\left[\because \mathrm{OM}=\sqrt{\mathrm{OP}^{2}-\mathrm{PM}^{2}}\right.
$$

$$
\Rightarrow \quad \frac{5}{\mathrm{TP}}=\frac{3}{4}\left\{\begin{array}{l}
=\sqrt{25-1} \\
=3 \mathrm{~cm}
\end{array}\right.
$$

$$
\Rightarrow \quad \mathrm{TP}=\frac{20}{3} \mathrm{~cm}=\mathrm{TQ}
$$

6. See Worksheet-98, Sol. 5.
7. Let the given two tangents be PA and PB to the circle with centre O .
We need to prove
 $\angle \mathrm{APB}+\angle \mathrm{AOB}=180^{\circ}$.
We know that the angle formed by a tangent to the circle and the radius passing through the point of contact is 90°.
$\therefore \quad \angle \mathrm{PAO}=\angle \mathrm{PBO}=90^{\circ}$
Applying angle sum property in the quadrilateral AOBP, we get

$$
\begin{array}{rlrl}
& \angle \mathrm{PAO}+\angle \mathrm{AOB}+\angle \mathrm{PBO}+\angle \mathrm{APB} & =360^{\circ} \\
\Rightarrow & 90^{\circ}+\angle \mathrm{AOB}+90^{\circ}+\angle \mathrm{APB} & =360^{\circ} \\
\Rightarrow & & \angle \mathrm{AOB}+\angle \mathrm{APB} & =180^{\circ} .
\end{array}
$$

Hence proved.
8. We have given $l \| m$ to a circle. DE is intercept made by tangent at C, betw-een l and m.

We have to prove $\angle \mathrm{DEF}=90^{\circ}$
Construction: Join A to F, F to B and F to C.
Proof: In a triangles ADF and DFC, we have

$$
\mathrm{DA}=\mathrm{DC}
$$

(Tangents drawn from an external
point are equal in length)

$$
\begin{array}{rlr}
\mathrm{DF} & =\mathrm{DF} & \begin{aligned}
\text { (Common) }
\end{aligned} \\
& \mathrm{AF} & =\mathrm{CF}
\end{array} \text { (Radii of the same circle) }
$$

Now, $\angle \mathrm{ADC}+\angle \mathrm{CEB}=180^{\circ}$
Sum of the interior angles on the same side of transversal is 180°.

$$
\begin{array}{cc}
\Rightarrow & 2 \angle \mathrm{CDF}+2 \angle \mathrm{CEF}=180^{\circ} \\
\Rightarrow & \angle \mathrm{CDF}+\angle \mathrm{CEF}=90^{\circ} \tag{iii}
\end{array}
$$

In $\triangle \mathrm{DEF}$,
$\angle \mathrm{DEF}+\angle \mathrm{EDF}+\angle \mathrm{DFE}=180^{\circ}$

$$
\begin{array}{lrl}
\Rightarrow & 90^{\circ}+\angle \mathrm{DFE}=180^{\circ} & {[\text { From (iii) }]} \\
\Rightarrow & \angle \mathrm{DFE}=90^{\circ} .
\end{array}
$$

Hence proved.

WORKSHEET-102

1. Let radius $=r$

$$
\therefore \quad \mathrm{PO}=\mathrm{PB}=\mathrm{BQ}=r
$$

$$
\mathrm{AB}=\sqrt{17^{2}-15^{2}}=8 \mathrm{~cm}
$$

Now,

$$
\begin{array}{rlrl}
& & \mathrm{AC} & =\mathrm{AR}+\mathrm{RC} \\
\Rightarrow & 17 & =8-r+15-r \\
\Rightarrow & 2 r & =23-17=6 \\
\Rightarrow & r & =3 \mathrm{~cm} .
\end{array}
$$

2. $\mathrm{AB}=\sqrt{\mathrm{OB}^{2}-\mathrm{OA}^{2}}$

$$
\begin{aligned}
& =\sqrt{169-25} \\
& =\sqrt{144}=12 \mathrm{~cm} .
\end{aligned}
$$

3. True, because in right angled isosceles triangle AOB,
$\mathrm{OP}=\sqrt{a^{2}+a^{2}}=a \sqrt{2}$
4. In $\triangle \mathrm{APQ}$,

$$
\begin{aligned}
& \angle \mathrm{PAQ}=\angle \mathrm{AQP}=\theta \text { (say) } \\
& \quad(\because \mathrm{AP}=\mathrm{PQ}=\text { radius }) \\
& \angle \mathrm{RPB}=\angle \mathrm{QAP}=\theta
\end{aligned}
$$

(Corresponding angles)

$$
\angle \mathrm{RPQ}=\angle \mathrm{AQP}=\theta
$$

(Alternate angles)

Now, in $\triangle R P Q$ and $\triangle R P B$,

$$
\begin{aligned}
\mathrm{RP} & =\mathrm{RP} \\
\angle \mathrm{RPQ} & =\angle \mathrm{RPB} \\
\mathrm{PQ} & =\mathrm{PB}
\end{aligned}
$$

(Common)
(Each θ)
(Each radius)

So, by SAS creterion of similarity, we have

$$
\Delta \mathrm{RPQ} \sim \Delta \mathrm{RPB}
$$

$\therefore \quad \angle \mathrm{RBP}=\angle \mathrm{RQP}$
But $R Q \perp P Q$,
$\therefore \quad \angle \mathrm{RQP}=90^{\circ}$
$\therefore \quad \angle \mathrm{RBP}=90^{\circ}$
$\Rightarrow B R$ is tangent at B.
Hence proved.
5. Join OR and OS.

Let

$$
\mathrm{AP}=x \therefore \mathrm{AS}=x
$$

In quadrilateral OSDR,

$$
\begin{aligned}
\angle \mathrm{O}+\angle \mathrm{S}+\angle \mathrm{D}+\angle \mathrm{R}=360^{\circ} \\
\Rightarrow \angle \mathrm{O}+90^{\circ}+90^{\circ}+90^{\circ}=360^{\circ}
\end{aligned}
$$

$$
(\because \mathrm{OS} \perp \mathrm{AD} \text { and } \mathrm{OR} \perp \mathrm{CD})
$$

$$
\Rightarrow \quad \angle \mathrm{O}=90^{\circ}
$$

$\Rightarrow \operatorname{OSDR}$ is a square.
$\Rightarrow \mathrm{DR}=\mathrm{DS}=r$
Now, ABCD is a subscribed quadrilateral

$$
\begin{aligned}
\therefore & \mathrm{AB}+\mathrm{CD} & =\mathrm{BC}+\mathrm{DA} \\
\Rightarrow & x+27+25 & =38+r+x \\
\Rightarrow & r & =14 \mathrm{~cm} .
\end{aligned}
$$

6. Let the given parallelogram be ABCD whose sides touches a circles at P, Q, R and S as shown in the adjoining figure.
Since, length of two
 tangents drawn from an external point to a circle are equal.
$\therefore \quad \mathrm{AP}=\mathrm{AS}$
Similarly, we have

$$
\begin{align*}
\mathrm{PB} & =\mathrm{BQ} \tag{ii}\\
\mathrm{DR} & =\mathrm{SD} \tag{iii}\\
\mathrm{RC} & =\mathrm{QC}
\end{align*}
$$

Adding these four equations, we have $\mathrm{AP}+\mathrm{PB}+\mathrm{DR}+\mathrm{RC}=\mathrm{AS}+\mathrm{BQ}+\mathrm{SD}+\mathrm{QC}$ $\Rightarrow(\mathrm{AP}+\mathrm{PB})+(\mathrm{DR}+\mathrm{RC})$ $=(\mathrm{AS}+\mathrm{SD})+(\mathrm{BQ}+\mathrm{QC})$
$\Rightarrow \quad \mathrm{AB}+\mathrm{DC}=\mathrm{AD}+\mathrm{BC}$
$\because A B=D C$ and $A D=B C$
(ABCD is a parallelogram)
$\therefore \quad \mathrm{AB}=\mathrm{BC}$
Thus, $\mathrm{AB}=\mathrm{BC}=\mathrm{CD}=\mathrm{DA}$
Hence, $A B C D$ is a rhombus.

OR

Let the given quadrilateral be ABCD subscribing a circle with centre O. Let the sides $\mathrm{AB}, \mathrm{BC}, \mathrm{CD}$ and DA touch the circle at P, Q, R and S respectively (see figure).

Join OA, OB, OC, OD, OP, OQ, OR and OS.
We need to prove
$\angle \mathrm{AOB}+\angle \mathrm{COD}=\angle \mathrm{BOC}+\angle \mathrm{DOA}=180^{\circ}$.
Proof: In $\triangle \mathrm{AOP}$ and $\triangle \mathrm{AOS}$,
OP $=$ OS \quad (Radii of same circle)
$\mathrm{AP}=\mathrm{AS}$ (Tangents from external points)
$\mathrm{AO}=\mathrm{AO}$
(Common)
$\therefore \triangle \mathrm{AOP} \cong \triangle \mathrm{AOS}(\mathrm{SSS}$ axiom of congruence)
$\therefore \angle 1=\angle 8$
...(i) (СРСТ)
Similarly, we can prove that
$\angle 2=\angle 3, \angle 4=\angle 5$ and $\angle 6=\angle 7$
As, $\angle 1, \angle 2, \angle 3, \angle 4, \angle 5, \angle 6, \angle 7$ and $\angle 8$ are subtended at a point
$\therefore \angle 1+\angle 2+\angle 3+\angle 4+\angle 5+\angle 6+\angle 7+\angle 8$

$$
=360^{\circ}
$$

$\Rightarrow \angle 1+\angle 1+\angle 2+\angle 2+\angle 5+\angle 5+\angle 6+\angle 6$

$$
=360^{\circ}
$$

Also, $\angle 8+\angle 8+\angle 3+\angle 3+\angle 4+\angle 4+\angle 7$

$$
+\angle 7=360^{\circ}
$$

[Using results from equations (i) and (ii)]
$\Rightarrow \quad 2(\angle 1+\angle 2)+2(\angle 5+\angle 6)=360^{\circ}$
Also, $\quad 2(\angle 3+\angle 4)+2(\angle 7+\angle 8)=360^{\circ}$
$\Rightarrow \quad 2 \angle \mathrm{AOB}+2 \angle \mathrm{COD}=360^{\circ}$
Also, $\quad 2 \angle \mathrm{BOC}+2 \angle \mathrm{DOA}=360^{\circ}$
$\Rightarrow \angle \mathrm{AOB}+\angle \mathrm{COD}=\angle \mathrm{BOC}+\angle \mathrm{DOA}$
$=180^{\circ}$
Hence proved.
7. Let the given quadrilateral be ABCD subscribing a circle with centre O. Let the sides $\mathrm{AB}, \mathrm{BC}, \mathrm{CD}$ and DA touch the circle at P, Q, R and S respectively
 (see figure).

Join OA, OB, OC, OD, OP, OQ, OR and OS.
We need to prove
$\angle \mathrm{AOB}+\angle \mathrm{COD}=\angle \mathrm{BOC}+\angle \mathrm{DOA}=180^{\circ}$.
Proof: In $\triangle \mathrm{AOP}$ and $\triangle \mathrm{AOS}$,
$\mathrm{OP}=\mathrm{OS}$
(Radii of same circle)
AP $=A S$ (Tangents from external points)
$\mathrm{AO}=\mathrm{AO}$
(Common)
$\therefore \Delta \mathrm{AOP} \cong \Delta \mathrm{AOS}$ (SSS axiom of congruence)
$\therefore \angle 1=\angle 8$
...(i) (CPCT)
Similarly, we can prove that
$\angle 2=\angle 3, \angle 4=\angle 5$ and $\angle 6=\angle 7$
As, $\angle 1, \angle 2, \angle 3, \angle 4, \angle 5, \angle 6, \angle 7$ and $\angle 8$ are subtended at a point
$\therefore \angle 1+\angle 2+\angle 3+\angle 4+\angle 5+\angle 6+\angle 7+\angle 8$
$=360^{\circ}$
$\Rightarrow \angle 1+\angle 1+\angle 2+\angle 2+\angle 5+\angle 5+\angle 6+\angle 6$
$=360^{\circ}$
Also, $\angle 8+\angle 8+\angle 3+\angle 3+\angle 4+\angle 4+\angle 7+\angle 7$
$=360^{\circ}$
[Using results from equations (i) and (ii)] $\Rightarrow \quad 2(\angle 1+\angle 2)+2(\angle 5+\angle 6)=360^{\circ}$ Also, $\quad 2(\angle 3+\angle 4)+2(\angle 7+\angle 8)=360^{\circ}$
$\Rightarrow \quad 2 \angle \mathrm{AOB}+2 \angle \mathrm{COD}=360^{\circ}$

$$
\text { Also, } \quad 2 \angle \mathrm{BOC}+2 \angle \mathrm{DOA}=360^{\circ}
$$

$\Rightarrow \angle \mathrm{AOB}+\angle \mathrm{COD}=\angle \mathrm{BOC}+\angle \mathrm{DOA}$
$=180^{\circ}$
Hence proved.
8. Try yourself

WORKSHEET- 103

1. Perimeter of $\triangle \mathrm{EOF}=\mathrm{ED}+\mathrm{DF}+\mathrm{EF}$

$$
\begin{aligned}
& =(\mathrm{ED}+\mathrm{DH})+(\mathrm{HF}+\mathrm{EF}) \\
& =(\mathrm{ED}+\mathrm{DK})+(\mathrm{FM}+\mathrm{EF}) \\
& =\mathrm{EK}+\mathrm{EM}=2 \mathrm{EK}=2 \times 9 \\
& =18 \mathrm{~cm}
\end{aligned}
$$

2. Hint: $\mathrm{AB}=2 \mathrm{AM}$

3. $\mathrm{AP}=15 \mathrm{~cm} ; \mathrm{OA}=8 \mathrm{~cm} ; \mathrm{OB}=5 \mathrm{~cm}$
\therefore as $\mathrm{OA} \perp \mathrm{AP}$

$$
\begin{aligned}
\Rightarrow \quad \mathrm{OP} & =\sqrt{\mathrm{OA}^{2}+\mathrm{AP}^{2}}=\sqrt{8^{2}+15^{2}} \\
& =\sqrt{64+225}=\sqrt{289}=17
\end{aligned}
$$

\therefore as $\mathrm{OB} \perp \mathrm{BP}$

$$
\begin{aligned}
\Rightarrow \quad \mathrm{BP}^{2} & =\mathrm{OP}^{2}-\mathrm{OB}^{2} \\
& =17^{2}-5^{2} \\
& =289-25 \\
& =264
\end{aligned}
$$

$\therefore \quad \mathrm{BP}=\sqrt{264} \mathrm{~cm}=2 \sqrt{66} \mathrm{~cm}$.
4. 16 cm

Given: $\mathrm{AP}=5 \mathrm{~cm}$
$\Rightarrow \quad \mathrm{BP}=12-5=7 \mathrm{~cm}$
also $\quad \mathrm{AP}=5 \mathrm{~cm}=\mathrm{AQ}$
$\therefore \quad Q C=14-5=9 \mathrm{~cm}$
$\therefore \quad B C=B R+R C$

$$
=\mathrm{BP}+\mathrm{CQ}=7+9=16 \mathrm{~cm}
$$

5. See Worksheet-102, Sol. 7.
6. See Worksheet-100, Sol. 7.
7. For proof of theorem see solved example 4.
8. Join $\mathrm{OB}, \mathrm{OG}, \mathrm{OA}, \mathrm{OH}$ and OC .

Radius $=\mathrm{OD}=\mathrm{OG}=\mathrm{OH}=4 \mathrm{~cm}$ $\mathrm{HC}=\mathrm{DC}=6 \mathrm{~cm}$ $\mathrm{BG}=\mathrm{BD}=8 \mathrm{~cm}$
Let $\mathrm{AG}=\mathrm{AH}=x$
$\operatorname{ar}(\triangle \mathrm{OBC})$

$$
\begin{aligned}
& =\frac{1}{2} \times \text { base } \times \text { height } \\
& =\frac{1}{2} \times 14 \times 4 \\
& =28 \mathrm{~cm}^{2}
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{ar}(\triangle \mathrm{OAB}) & =\frac{1}{2} \times(x+8) \times 4 \\
& =(2 x+16) \mathrm{cm}^{2} \\
\operatorname{ar}(\triangle \mathrm{OBC}) & =\frac{1}{2} \times(x+6) \times 4 \\
& =(2 x+12) \mathrm{cm}^{2}
\end{aligned}
$$

$\therefore \operatorname{ar}(\triangle \mathrm{ABC})=28+2 x+16+2 x+12$
$\Rightarrow \operatorname{ar}(\Delta \mathrm{ABC})=(4 x+56) \mathrm{cm}^{2}$
In $\triangle \mathrm{ABC}, s=\frac{\mathrm{AB}+\mathrm{BC}+\mathrm{CA}}{2}$

$$
=\frac{x+8+14+x+6}{2}=x+14
$$

$\therefore \operatorname{ar}(\Delta \mathrm{ABC})=\sqrt{s(s-\mathrm{AB})(s-\mathrm{BC})(s-\mathrm{CA})}$
$\Rightarrow \operatorname{ar}(\triangle \mathrm{ABC})=\sqrt{(x+14) \times 6 \times x \times 8}$
Comparing equations (i) and (ii), we get

$$
\begin{gathered}
4 x+56=\sqrt{(x+14) \times 6 \times x \times 8} \\
\Rightarrow 4^{2}(x+14)^{2}=(x+14) \times 6 \times x \times 8
\end{gathered}
$$

(On squaring both sides)
$\Rightarrow 16(x+14)(x+14-3 x)=0$
$\Rightarrow x=7$ as $x \neq-14$
$(\because x>0)$
So, $\mathrm{AB}=x+8=7+8=15 \mathrm{~cm}$ and $A C=x+6=7+6=13 \mathrm{~cm}$.

WORKSHEET-104

1. $\mathrm{QR}=\mathrm{QP}+\mathrm{PR}$

$$
\begin{array}{lr}
=\mathrm{PT}+\mathrm{PT} \quad[\because \mathrm{PT}=\mathrm{PQ}=\mathrm{PR}] \\
=2(\mathrm{PT})=2 \times 3.8 \quad[\because \mathrm{PT}=3.8 \mathrm{~cm}] \\
=7.6 \mathrm{~cm} .
\end{array}
$$

2. $\angle \mathrm{BAT}=\angle \mathrm{ACB}=55^{\circ}$.
3. $\mathrm{AD}=\mathrm{DC}=4$
$\Rightarrow \quad \mathrm{AD}=4 \mathrm{~cm}$

$\begin{array}{ll}\text { Similarly } & \mathrm{CD}=\mathrm{DB}=4 \mathrm{~cm} \\ \Rightarrow & \mathrm{DB}=4 \mathrm{~cm}\end{array}$
$\therefore \mathrm{AB}=\mathrm{AD}+\mathrm{DB}=4+4=8 \mathrm{~cm}$.
4. False, because the centres of the circles lie on the perpendicular of PQ , which passes through A.
5. Let the sides $A B$, $B C$ and CA of the $\triangle \mathrm{ABC}$ touch the circle with centre O at the point P, Q
 and R respectively.
In quadrilateral OQCR,

$$
\angle \mathrm{OQC}=\angle \mathrm{ORC}=90^{\circ}
$$

(Angles between tangent and corresponding radius)
and $\quad \angle \mathrm{QCR}=90^{\circ}$
(Given)
$\Rightarrow \quad \angle \mathrm{QOR}=90^{\circ}$
$\Rightarrow \mathrm{OQCR}$ is a square
$\Rightarrow \quad \mathrm{CQ}=\mathrm{CR}=r$
$\Rightarrow \quad \mathrm{BQ}=a-r, \mathrm{AR}=b-r$,
$\Rightarrow \quad \mathrm{AP}=b-r, \mathrm{~PB}=a-r$
But $\quad \mathrm{AB}=\mathrm{c}$
$\therefore \quad b-r+a-r=c$
$\Rightarrow \quad 2 r=a+b-c$
$\Rightarrow \quad r=\frac{a+b-c}{2}$. Hence proved.
6. Draw a line QT passing through Q and perpendicular to QP to meet SR at T.
In $\triangle \mathrm{PQR}$,

$$
\mathrm{PQ}=\mathrm{PR}
$$

(Tangents from an external point)
$\therefore \angle \mathrm{PRQ}=\angle \mathrm{PQR}$
(Angles opposite to equal sides)
$\angle \mathrm{PQR}+\angle \mathrm{PRQ}+\angle \mathrm{QPR}=180^{\circ}$
(Angle sum property for a triangle)
From equations (i) and (ii),

$$
\begin{align*}
\angle \mathrm{PQR}+\angle \mathrm{PQR}+30^{\circ} & =180^{\circ} \\
\Rightarrow \quad \angle \mathrm{PQR}=\angle \mathrm{PRQ} & =75^{\circ} \tag{iii}\\
\text { Now, } \quad \angle \mathrm{TQR}+\angle \mathrm{PQR} & =90^{\circ}
\end{align*}
$$

(Angle between tangent)
$\Rightarrow \quad \mathrm{TQR}=15^{\circ} \quad \ldots(i v)[\mathrm{Using}(i i i)]$
$\therefore \quad \mathrm{SR} \| \mathrm{QP}$ and $\mathrm{QT} \perp \mathrm{QP}$
$\therefore \quad \mathrm{QT} \perp \mathrm{SR}$
$\Rightarrow \quad \mathrm{ST}=\mathrm{TR}$
$(\because$ TQ passess through the centre of the circle)
In $\triangle \mathrm{STQ}$ and RTQ,

$$
\begin{array}{rlr}
\mathrm{ST} & =\mathrm{TR} & {[\text { From }(v)]} \\
\angle \mathrm{STQ} & =\angle \mathrm{RTQ} & (\because \mathrm{QT} \perp \mathrm{SR}) \\
\mathrm{TQ} & =\mathrm{TQ} & (\text { Common }) \\
\therefore & & \\
\Rightarrow & \angle \mathrm{STQ} & \cong \Delta \mathrm{RTQ} \\
\angle \mathrm{SQT} & =\angle \mathrm{RQT}=15^{\circ} & {[\text { SAS criterion })} \\
\Rightarrow \mathrm{SQT}+\angle \mathrm{TQR} & =15^{\circ}+15^{\circ} & \\
\Rightarrow & \angle \mathrm{RQS} & =30^{\circ} .
\end{array}
$$

\[

\]

In right-angled $\triangle \mathrm{OAP}$

$$
\begin{aligned}
\cos 60^{\circ} & =\frac{\mathrm{AP}}{\mathrm{OP}} \quad \mathrm{P}<\sqrt[30^{\circ}]{30^{\circ}} \\
\Rightarrow \quad \frac{1}{2} & =\frac{\mathrm{AP}}{\mathrm{OP}} \Rightarrow \mathrm{OP}=2 \mathrm{AP}
\end{aligned}
$$

7. See Worksheet-101, Sol. 8.
8. Let $\mathrm{AD}=x$. We know that the tangents drawn from an external point to a circle are equal.
$\therefore \quad \mathrm{AD}=\mathrm{AF}=x$
 $B D=B E$
and $C E=C F$
Now, $\mathrm{BD}=\mathrm{AB}-\mathrm{AD}=8-x=\mathrm{BE}$
and $\quad \mathrm{CE}=\mathrm{BC}-\mathrm{BE}=10-(8-x)$

$$
\begin{aligned}
& =2+x=\mathrm{CF} . \\
\mathrm{AF} & =\mathrm{AC}-\mathrm{CF}=12-(2+x) \\
& =10-x=\mathrm{AD}
\end{aligned}
$$

But $\mathrm{AD}=x$
$\therefore 10-x=x \Rightarrow x=5 \mathrm{~cm}$, i.e., $\mathrm{AD}=5 \mathrm{~cm}$

$$
\mathrm{BE}=8-x=8-5=3 \mathrm{~cm}
$$

and $\mathrm{CF}=2+x=2+5=7 \mathrm{~cm}$
Thus, $\mathrm{AD}=5 \mathrm{~cm}, \mathrm{BE}=3 \mathrm{~cm}$ and $\mathrm{CF}=7 \mathrm{~cm}$.

CHAPTER TEST

1. $\because \mathrm{OA} \perp \mathrm{AT}$
$\therefore \quad \angle \mathrm{OAT}=90^{\circ}$
In $\triangle \mathrm{OAT}$,
$\cos \mathrm{T}=\frac{\mathrm{AT}}{\mathrm{OT}}$

$\Rightarrow \cos 30^{\circ}=\frac{\mathrm{AT}}{4}$
$\Rightarrow \mathrm{AT}=2 \sqrt{3} \mathrm{~cm}$.
2. As AB is diameter $\Rightarrow \angle \mathrm{ACB}=90^{\circ}$

Also, $\quad \angle \mathrm{CAB}=30^{\circ}$
\therefore In right-angle $\triangle A C B$,

$$
\begin{aligned}
\angle \mathrm{ABC} & =180^{\circ}-(90+\angle \mathrm{CAB}) \\
& =180^{\circ}-90-30=60^{\circ} \\
\therefore \quad \angle \mathrm{PCA} & =\angle \mathrm{ABC}=60^{\circ} .
\end{aligned}
$$

3. $\mathrm{AC}=\sqrt{8^{2}+6^{2}}$

$$
\begin{aligned}
& =\sqrt{100} \\
& =10 \mathrm{~cm}
\end{aligned}
$$

Area $\triangle \mathrm{ABC}$

$$
\begin{align*}
& =\frac{1}{2} \times \mathrm{BC} \times \mathrm{AB} \\
& =\frac{1}{2} \times 6 \times 8=24 \mathrm{~cm} \tag{i}
\end{align*}
$$

Also area of $\triangle \mathrm{ABC}=$ ar $\triangle \mathrm{AOB}+\operatorname{ar} \Delta \mathrm{BOC}$ + ar $\triangle \mathrm{AOC}$
$=\frac{1}{2} \times \mathrm{AB} \times r+\frac{1}{2} \times \mathrm{BC} \times r+\mathrm{AC} \times r$
$=\frac{1}{2} \times r \times[\mathrm{AB}+\mathrm{BC}+\mathrm{AC}]$
$=\frac{1}{2} \times r \times 24=12 r$
\therefore From (i) and (ii) $\Rightarrow 24=12 r$

$$
=r=2 \mathrm{~cm} .
$$

4. True, as $\angle \mathrm{BPA}=90^{\circ},(\because \mathrm{AB}$ is diameter $)$ $\angle \mathrm{PAB}=\angle \mathrm{OPA}=60^{\circ} \quad(\because \mathrm{OP}=\mathrm{OA})$

Also $\quad \mathrm{OP} \perp \mathrm{PT}$.
$\therefore \quad \angle \mathrm{APT}=30^{\circ}$
and $\angle \mathrm{PTA}=60^{\circ}-30^{\circ}=30^{\circ}$.
5. Let the given chord be $A B$ and two tangents to the circle with centre O be AP and BP.
We need to prove

$$
\angle \mathrm{PAB}=\angle \mathrm{PBA}
$$

Join OA and OB.

Proof:

In $\triangle \mathrm{AOB}, \mathrm{AO}=\mathrm{BO}$

$\therefore \angle \mathrm{ABO}=\angle \mathrm{BAO}$
As, the tangent is perpendicular to the radius passing through the point of contact,

$$
\begin{equation*}
\angle \mathrm{PAO}=\angle \mathrm{PBO}=90^{\circ} \tag{ii}
\end{equation*}
$$

Again, $\quad \angle \mathrm{PAO}=\angle \mathrm{PBO} \quad$ [Using (ii)]
$\Rightarrow \angle \mathrm{PAB}+\angle \mathrm{BAO}=\angle \mathrm{PBA}+\angle \mathrm{ABO}$
$\Rightarrow \angle \mathrm{PAB}+\angle \mathrm{ABO}=\angle \mathrm{PBA}+\angle \mathrm{ABO}$
[Using (i)]
$\Rightarrow \quad \angle \mathrm{PAB}=\angle \mathrm{PBA}$.
6. Hint: $A P=A U$,

$$
\begin{aligned}
\mathrm{BP} & =\mathrm{BQ}, \\
\mathrm{CR} & =\mathrm{CQ}, \\
\mathrm{DR} & =\mathrm{DS}, \\
\mathrm{ET} & =\mathrm{ES} \\
\mathrm{FT} & =\mathrm{FU} .
\end{aligned}
$$

7. We know that the tangents drawn from an external point to a circle are equal in length.

$$
\begin{align*}
\therefore \quad A Q & =A R \tag{i}\\
B Q & =B P \tag{ii}
\end{align*}
$$

and $C P=C R$
Now,

$$
\begin{aligned}
& \mathrm{AQ}=\mathrm{AB}+\mathrm{BQ} \\
&=\mathrm{AB}+\mathrm{BP} \quad[\text { From (ii)] } \\
&=\mathrm{AB}+(\mathrm{BC}-\mathrm{PC}) \\
&=\mathrm{AB}+\mathrm{BC}-\mathrm{CR} \quad[\text { From (iii)] } \\
&=\mathrm{AB}+\mathrm{BC}-(\mathrm{AR}-\mathrm{AC}) \\
&=\mathrm{AB}+\mathrm{BC}+\mathrm{CA}-\mathrm{AR} \\
&=\mathrm{AB}+\mathrm{BC}+\mathrm{CA}-\mathrm{AQ} \quad[\text { From (i)] } \\
& \Rightarrow \mathrm{AQ}+\mathrm{AQ}=\mathrm{AB}+\mathrm{BC}+\mathrm{CA} \\
& \Rightarrow \quad \mathrm{AQ}=\frac{1}{2}(\mathrm{AB}+\mathrm{BC}+\mathrm{CA})
\end{aligned}
$$

Hence proved.
8. Join OP.
\therefore As BA is diameter

$$
\Rightarrow \quad \angle \mathrm{BPA}=90^{\circ}
$$

\therefore In $\triangle \mathrm{BPA}$,

$$
\angle \mathrm{BAP}=180^{\circ}-\left(90+30^{\circ}\right)=60^{\circ}
$$

Also as OP $=\mathrm{OA}=$ (Radius)
$\Rightarrow \quad \angle \mathrm{OPA}=\angle \mathrm{OAP}=\angle \mathrm{BAP}=60^{\circ}$
\therefore In $\angle \mathrm{OPT}$ as $\mathrm{OP} \perp \mathrm{PT}$
$\Rightarrow \quad \angle \mathrm{OPT}=90^{\circ}$
$\Rightarrow \quad \angle \mathrm{OPA}+\angle \mathrm{APT}=90^{\circ}$
$\Rightarrow \quad 60^{\circ}+\angle \mathrm{APT}=90^{\circ}$
(Using (i))
$\Rightarrow \quad \angle \mathrm{APT}=90^{\circ}-60=30^{\circ}$
Also $\quad \angle \mathrm{OAP}=\angle \mathrm{APT}+\angle \mathrm{PTA}$
(Exterior angle sum property)
$\Rightarrow \quad 60=30^{\circ}+\angle$ PTA
$\Rightarrow \quad \angle \mathrm{PTA}=30^{\circ}$
$\therefore \quad \angle \mathrm{APT}=\angle \mathrm{PTA}=30^{\circ}$
$\Rightarrow \quad \mathrm{AP}=\mathrm{AT}$
(Sides opposite to equal angles are also equal)
Now, In $\triangle \mathrm{OPA}$,

$$
\begin{array}{ll}
\text { as } & \angle \mathrm{OPA}=\angle \mathrm{OAP}=60^{\circ} \\
\Rightarrow & \angle \mathrm{POA}=60^{\circ} \quad \text { (Using angle sum } \\
&
\end{array}
$$

$\therefore \angle \mathrm{OPA}$ is equilateral

$$
\begin{equation*}
\Rightarrow \quad \mathrm{OP}=\mathrm{OA}=\mathrm{PA} . \tag{iii}
\end{equation*}
$$

Now,

$$
\begin{aligned}
\mathrm{BA} & =\mathrm{BO}+\mathrm{OA}=\mathrm{OA}+\mathrm{OA} \\
& =2 \mathrm{OA}=2 \mathrm{AT}
\end{aligned}
$$

$\{\because$ From (ii) and (iii), OA $=\mathrm{AT}\}$

$$
\begin{array}{lc}
\Rightarrow & \frac{\mathrm{BA}}{\mathrm{AT}}=\frac{2}{1} \\
\Rightarrow & \mathrm{BA}: \mathrm{AT}=2: 1
\end{array}
$$

Hence proved.

WORKSHEET- 106

1. Since, the angle between two radii of a circle and the angle between corresponding two tangents are supplementary.
$\therefore \quad$ Required angle $=180^{\circ}-35^{\circ}=145^{\circ}$.
2. 5:2.

As there are 5 marks at equal distance on AX and 2 marks at equal distance on $B X^{\prime}$. As A_{5} is joined with B_{2}.
$\therefore \quad \mathrm{P}$ divides AB in the ratio $5: 2$.
3.
$\mathrm{AB}=8.5 \mathrm{~cm}$ and $\frac{\mathrm{AC}}{\mathrm{CB}}=\frac{3}{7}$
$\mathrm{AC}=2.55 \mathrm{~cm}, \mathrm{CB}=5.95 \mathrm{~cm}$.
4. $\Delta \mathrm{CAB} \sim \Delta \mathrm{C}^{\prime} \mathrm{AB}^{\prime}$

5. Steps of construction:

Step I: First, draw a circle with radius as 5 cm and centre at O . Then take a point P so that $\mathrm{OP}=11 \mathrm{~cm}$.
Step II: Bisect OP to find mid-point M of OP. Then take M as centre and MP $=M O$ as radius, draw a circle to intersect the previous circle at Q and R.
Step III: Join PQ and PR which are the required tangents.
After measuring PQ and PR, we find $\mathrm{PQ}=\mathrm{PR}=9.8 \mathrm{~cm}$ (approximately).

Justification:

Join OQ and OR.
In $\triangle \mathrm{OPQ}, \quad \mathrm{OP}=11 \mathrm{~cm}, \mathrm{OQ}=5 \mathrm{~cm}$ and $\mathrm{PQ}=9.8 \mathrm{~cm}$
$\therefore \quad \mathrm{OP}^{2}-\mathrm{OQ}^{2}=11^{2}-5^{2}=(11+5)(11-5)=96$
And $\quad \mathrm{PQ}^{2}=(9.8)^{2}=96.04$
Clearly, $\mathrm{OP}^{2}-\mathrm{OQ}^{2} \approx \mathrm{PQ}^{2}$
$\Rightarrow \quad \mathrm{OP}^{2}=\mathrm{OQ}^{2}+\mathrm{PQ}^{2}$
Also, $\quad \mathrm{OP}^{2}=\mathrm{OR}^{2}+\mathrm{PR}^{2}$
Therefore, $\triangle \mathrm{POQ}$ and $\triangle \mathrm{POR}$ are right triangles with $\angle \mathrm{PQO}=\angle \mathrm{PRO}=90^{\circ}$.
So, tangents are perpendicular to radii passing through their respective points of contact.
i.e., $\quad \mathrm{PQ} \perp \mathrm{OQ}$ and $\mathrm{PR} \perp \mathrm{OR}$.
6. $\angle \mathrm{C}=180^{\circ}-(\angle \mathrm{B}+\angle \mathrm{A})=180^{\circ}-150^{\circ}=30^{\circ}$.

Steps of construction:
In order to construct a triangle similar to $\triangle \mathrm{ABC}$, follow the following steps:
Step I: First, construct a $\triangle A B C$ in which $B C=7 \mathrm{~cm}, \angle B=45^{\circ}$ and $\angle C=30^{\circ}$.
Step II: Make an acute angle CBX such that X is on the side opposite to vertex A.
Step III: Locate four points namely X_{1}, X_{2}, X_{3} and X_{4} on $B X$ such that $B X_{1}=X_{1} X_{2}=X_{2} X_{3}=$ $X_{3} X_{4}$.

Step IV: Join $X_{3} C$ and draw a line $X_{4} C^{\prime} \| X_{3} C$ to intersect $B C$ produced at C^{\prime}.
Step V: Draw a line $C^{\prime} A^{\prime}$ parallel to side CA of $\triangle A B C$ to intersect BA produced at A^{\prime}. Then, $\Delta A^{\prime} B C^{\prime}$ is the required triangle.

WORKSHEET-107

1. Since $4+7=11$, therefore, B will be joined to A_{11}.
2. The required angle and the angle between the two tangents are supplementary.
\therefore Required angle $=180^{\circ}-60^{\circ}=120^{\circ}$.
3. Here, $5+8=13$
$\mathrm{AB}=7.6 \mathrm{~cm}$
$\mathrm{AC}: \mathrm{BC}=5: 8$
$\mathrm{AC}=2.92 \mathrm{~cm}$ and $\mathrm{BC}=4.68 \mathrm{~cm}$

4. $\triangle \mathrm{A}^{\prime} \mathrm{BC}^{\prime} \sim \Delta \mathrm{ABC}$

5. Justification: In $\triangle P Q R$ and $\Delta \mathrm{PQ}^{\prime} \mathrm{R}^{\prime}, \angle \mathrm{P}=45^{\circ}$ is common and $R Q \| R^{\prime} Q^{\prime}$.
$\therefore \triangle \mathrm{PQR} \sim \Delta \mathrm{PQ}^{\prime} \mathrm{R}^{\prime}$
We have draw $\mathrm{PP}_{1}=\mathrm{P}_{1} \mathrm{P}_{2}$

And $P_{3} Q \| P_{4} Q^{\prime}$
$\therefore \quad \frac{\mathrm{PQ}^{\prime}}{\mathrm{PQ}}=\frac{4}{3}$.
Also, $\quad \Delta \mathrm{PQR} \sim \Delta \mathrm{PQ}^{\prime} \mathrm{R}^{\prime}$
Hence, $\frac{P Q^{\prime}}{P Q}=\frac{P R^{\prime}}{P R}=\frac{R^{\prime} Q^{\prime}}{R Q}$.
6. Steps of construction: In order to construct a pair of required tangents, follow the following steps:
Step I: Draw a circle with radius $\mathrm{OA}=3 \mathrm{~cm}$ and centre O .

Step II: Take any point P outside the circle drawn in stepI and join OP.
Step III: Obtain mid-point M of OP obtained in step II and draw another circle with radius $\mathrm{OM}=\mathrm{PM}$ and centre M to intersect the circle drawn in step I at A and B.
Step IV: Join PA and PB.
These PA and PB form the required pair of tangents.

WORKSHEET- 108

1. The next step should be the line parallel to $B_{5} C$ should be passed through B_{4} as the sides of required triangle are $\frac{4}{5}$ of the corresponding sides of $\triangle \mathrm{ABC}$.
2. Two distinct tangents to a circle can be constructed from P only when P is situated at a distance more than radius (here $2 r$) from the centre.
3. False. In the ratio $3+\sqrt{2}: 3-\sqrt{2}$, i.e., $11+6 \sqrt{2}: 7,11+6 \sqrt{2}$ is not a positive integer, while 7 is.
4. Steps of construction: In order to construct a $\triangle A B C$ and its similar triangle with given measurements, follow the following steps:
Step I: Draw a $\triangle \mathrm{ABC}$ in which $\mathrm{BC}=7 \mathrm{~cm}, \angle \mathrm{~B}=45^{\circ}$ and $\angle \mathrm{C}=180^{\circ}-\left(45^{\circ}+105^{\circ}\right)=30^{\circ}$.

Step II: Make an acute $\angle C B X$ such that X is on the opposite side of the vertex A and locate points B_{1}, B_{2}, B_{3} and B_{4} on $B X$ such that $B_{1}=B_{1} B_{2}=B_{2} B_{3}=B_{3} B_{4}$.
Step III: Join $B_{3} C$ and draw $B_{4} C^{\prime} \| B_{3} C$ to intersect $B C$ produced at C^{\prime}. Also draw $C^{\prime} A^{\prime} \| C A$ to intersect BA produced at A^{\prime}.
Hence, $\triangle A^{\prime} \mathrm{BC}^{\prime} \sim \triangle \mathrm{ABC}$.
5. Steps of construction: In order to draw a pair of tangents to the given circle, follow the following steps:
Step I: Draw a radius AO in the given circle with centre O and draw another radius making an angle AOB of measure $180^{\circ}-60^{\circ}=120^{\circ}$.
Step II: Make $\angle \mathrm{OAP}=90^{\circ}$ and $\angle \mathrm{BOP}=90^{\circ}$ to intersect each other at P .
Such obtained AP and BP are the required tangents such that $\angle \mathrm{APB}=60^{\circ}$.

6. We are given a $\triangle \mathrm{PQR}$ with each side of measure 6 cm .

Steps of construction: In order to construct $\triangle \mathrm{ABC}$ follow the following steps:
Step I: Make an acute angle RQX and locate seven points $\mathrm{Q}_{1}, \mathrm{Q}_{2}, \mathrm{Q}_{3}, \mathrm{Q}_{4}$, Q_{5}, Q_{6} and Q_{7} on the ray $O X$ such that $Q Q_{1}=Q_{1} Q_{2}=Q_{2} Q_{3}=Q_{3} Q_{4}=$ $Q_{4} Q_{5}=Q_{5} Q_{6}=Q_{6} Q_{7}$.
Step II: Join $Q_{7} R$ and draw $Q_{6} C$ parallel to $Q_{7} R$ to intersect $Q R$ at C.
Step III: Draw CA parallel to RP to intersect BP (B and Q coincide) at A.

Then, $\triangle \mathrm{ABC}$ is the required triangle.

WORKSHEET- 109

1. Line segment $A_{5} B_{7}$ divides the line segment $A B$ in the ratio $5: 7$.
2. Two
3. True, because the angle between the tangents must be less than 180°.
4.

Measuring the tangent AP, we get $\mathrm{AP}=4.0 \mathrm{~cm}$
5. We are given a circle of radius 4 cm and centre O .
Steps of construction: In order to draw the required pair of tangents, follow the following steps.
Step I: Draw a pair of radius OA and OB inclined at an angle of $180^{\circ}-120^{\circ}=60^{\circ}$ to intersect the given circle at A and B respectively.
Step II: Draw perpendiculars AP and $B P$ which intersect each other at P.
Then AP and BP are the required tangents.
Justification: In quadrilateral, OBPA, applying Angle sum property, we have

$$
\angle \mathrm{O}+\angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{P}=360^{\circ}
$$

$\Rightarrow \quad 60^{\circ}+90^{\circ}+90^{\circ}+\angle \mathrm{P}=360^{\circ}$
$\Rightarrow \angle \mathrm{P}=360^{\circ}-240^{\circ} \Rightarrow \angle \mathrm{P}=120^{\circ}$.
Angle between the tangents is 120°.
6.

In the figure, $\Delta \mathrm{A}^{\prime} \mathrm{BC}^{\prime} \sim \Delta \mathrm{ABC}$.

Steps of construction:

First, we draw $\triangle A B C$ with the given measurements. Then we draw another triangle $\mathrm{A}^{\prime} \mathrm{BC}^{\prime}$ similar to $\triangle \mathrm{ABC}$ and of scalar factor $\frac{3}{4}$ using the following steps:
Step I: Draw a ray $B X$ such that $\angle C B X$ is an acute angle.

Step II: Mark $X_{1}, X_{2}, X_{3}, X_{4}$ on $B X$ such that $B X_{1}=X_{1} X_{2}=X_{2} X_{3}=X_{3} X_{4}$.
Step III: Join $X_{4} \mathrm{C}$ and draw $\mathrm{X}_{3} \mathrm{C}^{\prime} \| \mathrm{X}_{4} \mathrm{C}$.
Also, draw $\mathrm{A}^{\prime} \mathrm{C}^{\prime} \| \mathrm{AC}$.
Thus, $\Delta \mathrm{A}^{\prime} \mathrm{BC}^{\prime} \sim \Delta \mathrm{ABC}$.

WORKSHEET - 110

1. The minimum number of points should be 9 as $9>5$ out of the numerator and denominator of $\frac{9}{5}$. The next step is to be
joined B_{5} to C. joined B_{5} to C .
2. Angle of inclination, here θ, can lie between 0° and 180°. i.e., $0<\theta<180^{\circ}$.
3. In the adjoining figure,
$\Delta A B^{\prime} C^{\prime} \sim \Delta A B C$ such that $\frac{\mathrm{AB}^{\prime}}{\mathrm{AB}}=\frac{\mathrm{B}^{\prime} \mathrm{C}^{\prime}}{\mathrm{BC}}=\frac{\mathrm{AC}^{\prime}}{\mathrm{AC}}=\frac{3}{2}$.

4. Steps of construction:

1. Draw a $\triangle \mathrm{ABC}$ in which $\mathrm{AB}=5 \mathrm{~cm}, \mathrm{BC}=6 \mathrm{~cm}$ and $\mathrm{AC}=4 \mathrm{~cm}$.
2. Make any acute $\angle C B X$.
3. With suitable distances divide $\mathrm{BB}_{1}=\mathrm{B}_{1} \mathrm{~B}_{2}=\mathrm{B}_{2} \mathrm{~B}_{3}$.
4. Join $\mathrm{B}_{2} \mathrm{C}$.
5. Draw $\mathrm{B}_{2} \mathrm{C}^{\prime} \|$ to $\mathrm{B}_{3} \mathrm{C}$.
6. Draw $\mathrm{C}^{\prime} \mathrm{A}^{\prime} \|$ to CA .
7. $\triangle A^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime}$ is the required triangle whose side is $\frac{2}{3}$ of the corresponding sides of given $\triangle \mathrm{ABC}$.

8. $2 \frac{1}{2}=\frac{5}{2}$

Steps of construction: In order to construct an isosceles triangle and another triangle having $\frac{5}{2}$ of its corresponding sides, follow the steps given below:
Step I: Construct an isosceles triangle having any length of equal sides by drawing base $\mathrm{QR}=8 \mathrm{~cm}$ and altitude $\mathrm{PM}=4 \mathrm{~cm}$ passing through the mid-point M of side QR .

Step II: Draw a ray QX such that $\angle \mathrm{RQX}$ is and acute angle; and divide the ray in five equal parts, namely $Q Q_{1}, Q_{1} Q_{2}, Q_{2} Q_{3}, Q_{3} Q_{4}$ and $Q_{4} Q_{5}$.
Step III: Join $Q_{2} R$ and draw $Q_{5} R^{\prime} \| Q R$ intersecting $Q R$ produced at R^{\prime}.
Step IV: Draw $\mathrm{R}^{\prime} \mathrm{P}^{\prime}| | R P$ intersecting QP produced at P^{\prime}.

Hence, $\Delta \mathrm{P}^{\prime} \mathrm{QR}^{\prime}$ is formed so that $\frac{\mathrm{P}^{\prime} \mathrm{Q}}{\mathrm{PQ}}=\frac{Q R^{\prime}}{\mathrm{QR}}=\frac{\mathrm{P}^{\prime} \mathrm{R}^{\prime}}{\mathrm{PR}}=\frac{5}{2}$.
6. Steps of construction: In order to draw the required pairs of tangents, follow the following steps:
Step I: Draw a line segment $A B$ of length 9 cm . Taking A as centre and radius 4 cm ; and B as centre and radius 3 cm , draw circles.

Step II: Find the mid-point M of $A B$. Then, taking M as centre and radius as $A M=M B$, draw a circle to intersect circles drawn in step I at P, Q and R, S respectively.
Step III: Join AR, AS, BP and BQ.
Thus, obtained $A R, A S$ and $B P, B Q$ are the required pairs of tangents.

WORKSHEET-111

1. Q_{7} to R.
2. $5+7=12$.

$\mathrm{AP}: \mathrm{PB}=4: 5$.
3. False, because in the ratio $\sqrt{3}-1: \sqrt{3}+1$, i.e., $2-\sqrt{3}: 1,2-\sqrt{3}$ is not a positive integer, while 1 is.
4. To draw a pair of tangents from P to the circle with centre O, we follow the steps as given:
(a) Join OP and find its mid-point M.

(b) Taking M as centre and radius $=\mathrm{MP}$ $=\mathrm{MO}$, draw a circle to intersect the given circle at A and B.
(c) Join PA and PB.

PA and PB are the required tangents.
On measuring, $\mathrm{PA}=6.35 \mathrm{~cm}$ and
$\mathrm{PB}=6.35 \mathrm{~cm}$. Clearly, PA and PB are of same length.
6. $\triangle \mathrm{APQ}$ is required triangle.

Steps of construction:
Step I: Draw $A B=7 \mathrm{~cm}$.
Step II: From A draw an arc of radius 5 cm .
Step III: From B draw an arc of radius 6 cm which cut the arc of step II at point C.
Step IV: Join AC and BC
$\therefore \triangle \mathrm{ABC}$ is given triangle with $\mathrm{AB}=7 \mathrm{~cm}, \mathrm{AC}=5 \mathrm{~cm}$ and $\mathrm{BC}=6 \mathrm{~cm}$.
Step V: Draw ray AX.

Step VI: Mark $\mathrm{A}_{1}, \mathrm{~A}_{2}, \mathrm{~A}_{3}, \mathrm{~A}_{4}, \mathrm{~A}_{5}$ at equal distance.
Step VII: Join A_{5} to B and draw a line parallel to $A_{5} B$ from A_{4} which cut $A B$ at P.
Step VIII: Draw a line from P parallel to BC which cut AC at Q.
$\therefore \quad \triangle \mathrm{ABQ} \sim \triangle \mathrm{ABC}$ with scale factor $\frac{4}{5}$.
7. First we construct a $\triangle A B C$ with the given measurements. Then we construct a $\triangle A^{\prime} \mathrm{BC}^{\prime}$ similar to $\triangle \mathrm{ABC}$ and scale factor $\frac{5}{7}$. For it, we follow the steps given below.
(a) Draw a ray BX such that $\mathrm{O}<\angle \mathrm{CBX}$ $<90^{\circ}$ and mark points $\mathrm{B}_{1}, \mathrm{~B}_{2}, \mathrm{~B}_{3}, \mathrm{~B}_{4}, \mathrm{~B}_{5}$, B_{6} and B_{7} on it such that $B_{1}=B_{1} B_{2}=$ $\mathrm{B}_{2} \mathrm{~B}_{3}=\mathrm{B}_{3} \mathrm{~B}_{4}=\mathrm{B}_{4} \mathrm{~B}_{5}=\mathrm{B}_{5} \mathrm{~B}_{6}=\mathrm{B}_{6} \mathrm{~B}_{7}$.
(b) Join $\mathrm{B}_{7} \mathrm{C}$ and draw $\mathrm{B}_{5} \mathrm{C}^{\prime} \| \mathrm{B}_{7} \mathrm{C}$ to intersect $B C$ at C^{\prime} and hence draw $\mathrm{A}^{\prime} \mathrm{C}^{\prime} \| \mathrm{AC}$ to intersect AB at A^{\prime}.

Thus $\triangle \mathrm{A}^{\prime} \mathrm{BC}^{\prime} \sim \Delta \mathrm{ABC}$.
Justification: In $\triangle \mathrm{CBB}_{7}$,

$$
\begin{equation*}
\mathrm{CB}_{7} \| \mathrm{C}^{\prime} \mathrm{B}_{5} \text { and } \frac{\mathrm{BB}_{5}}{\mathrm{BB}_{7}}=\frac{5}{7} . \tag{i}
\end{equation*}
$$

So, by Thale's theorem, $\frac{\mathrm{BC}^{\prime}}{\mathrm{BC}}=\frac{5}{7}$
Similarly, in $\triangle \mathrm{ABC}, \quad \frac{\mathrm{A}^{\prime} \mathrm{B}}{\mathrm{AB}}=\frac{5}{7}$

Now, in $\triangle A B C$,
$\frac{\mathrm{BC}^{\prime}}{\mathrm{BC}}=\frac{\mathrm{A}^{\prime} \mathrm{B}}{\mathrm{AB}}=\frac{5}{7}$
[Using (i) and (ii); and $\angle \mathrm{B}=90^{\circ}$ (Given)]
$\Delta \mathrm{A}^{\prime} \mathrm{BC}^{\prime} \sim \Delta \mathrm{ABC}$ and $\frac{\mathrm{A}^{\prime} \mathrm{B}}{\mathrm{AB}}=\frac{\mathrm{BC}^{\prime}}{\mathrm{BC}}=\frac{\mathrm{A}^{\prime} \mathrm{C}^{\prime}}{\mathrm{AC}}=\frac{5}{7}$.
Hence justified.
8. First we draw an isosceles triangle $A B C$ with base $B C=7 \mathrm{~cm}$ and altitude $A D=4 \mathrm{~cm}$. Altitude passes through the mid-point D of $B C$. Hence we construct a $\triangle A^{\prime} B C^{\prime}$ similar to $\triangle A B C$ and of scalar factor $1 \frac{1}{2}$,i.e., $\frac{3}{2}$ using following the steps given below:

(a) Draw an acute angle CBX opposite to the vertex A with respect to BC .
(b) Mark points X_{1}, X_{2}, X_{3} on ray $B X$ such that $B X_{1}=X_{1} X_{2}=X_{2} X_{3}$.
(c) Join $X_{2} C$ and draw $X_{3} C^{\prime} \| X_{2} C$ to meet $B C$ produced at C^{\prime}.
(d) Draw $\mathrm{C}^{\prime} \mathrm{A}^{\prime} \| \mathrm{CA}$ to meet BA produced at A^{\prime}.

Thus formed $\Delta \mathrm{A}^{\prime} \mathrm{BC}^{\prime}$ is similar to $\triangle \mathrm{ABC}$ and of scalar factor $\frac{3}{2}$.

CHAPTER TEST

1. Line segment $P_{3} Q_{2}$ divides $P Q$ in $3: 2$ at M. Therefore, $P_{3} M: Q_{2} M=3: 2$ and so $\mathrm{Q}_{2} \mathrm{M}: \mathrm{P}_{3} \mathrm{M}=2: 3$.
2. No. A line segment can't be divided in the ratio $\sqrt{6}+1: \sqrt{6}-1$, i.e., $7+2 \sqrt{6}: 5$ as $7+2 \sqrt{6}$ is not a positive integer while 5 is.
3. True, because the irrational ratio $\sqrt{3}: \frac{1}{\sqrt{3}}$ can be converted into the rational ratio that is
$3: 1$.
4. First draw the rhombus $A B C D$ in which $A B=4 \mathrm{~cm}$ and $\angle A B C=60^{\circ}$ as given in figure and join $A C$. Construct the triangle $A B^{\prime} C^{\prime}$ similar to $\triangle A B C$ with scale factor $\frac{2}{3}$ (see figure).
Finally, draw the line segment $\mathrm{C}^{\prime} \mathrm{D}^{\prime}$ parallel to CD .
Now, $\quad \frac{\mathrm{AB}^{\prime}}{\mathrm{AB}}=\frac{2}{3}=\frac{\mathrm{A}^{\prime} \mathrm{C}^{\prime}}{\mathrm{AC}}$
Also, $\quad \frac{\mathrm{AC}^{\prime}}{\mathrm{AC}}=\frac{\mathrm{C}^{\prime} \mathrm{D}^{\prime}}{\mathrm{CD}}=\frac{\mathrm{AD}^{\prime}}{\mathrm{AD}}=\frac{2}{3}$
Therefore, $\mathrm{AB}^{\prime}=\mathrm{B}^{\prime} \mathrm{C}^{\prime}=\mathrm{C}^{\prime} \mathrm{D}^{\prime}=\mathrm{AD}^{\prime}=\frac{2}{3} \mathrm{AB}$.
i.e., $\mathrm{AB}^{\prime} \mathrm{C}^{\prime} \mathrm{D}^{\prime}$ is a rhombus.

5. $\mathrm{PT}, \mathrm{PT}^{\prime}$ and $\mathrm{QR}, \mathrm{QR}^{\prime}$ are required tangents.

6. Steps of construction: In order to construct triangles $A B C$ and $A Q R$, follow the steps given below:
Step I: Draw any line XY and take any point D on it.
Step II: Draw any ray DZ such that $\angle \mathrm{ZDY}=90^{\circ}$. Locate point C on DZ such that $\mathrm{CD}=3 \mathrm{~cm}$.
Step III: Make an $\angle \mathrm{DCB}=30^{\circ}$ such that CB intersects XY at B.
Step IV: Locate a point A on $X B$ such that $A B=5 \mathrm{~cm}$ and by joining $A C$, we find $\triangle A B C$.
Step V: Make an acute angle YAT and locate T_{1}, T_{2} and T_{3} on the ray AT such that
$\mathrm{AT}_{1}=\mathrm{T}_{1} \mathrm{~T}_{2}=\mathrm{T}_{2} \mathrm{~T}_{3}$.
Step VI: Join $\mathrm{T}_{2} \mathrm{~B}$ and draw $T_{3} Q \| T_{2} B$ to intersect line $A Y$ at Q. Also, draw QR to intersect AC extended at R.
Thus, $\triangle A Q R$ is obtained such that
$\triangle \mathrm{ABC} \sim \triangle \mathrm{AQR}$ and

$$
\frac{\mathrm{AQ}}{\mathrm{AB}}=\frac{\mathrm{QR}}{\mathrm{BC}}=\frac{\mathrm{AR}}{\mathrm{AC}}=\frac{3}{2} .
$$

WORKSHEET - 14

1. No.

As \quad AC $=$ diameter $=p \mathrm{~cm}$
\therefore If side of square is $x \mathrm{~cm}$
then

$$
p=\sqrt{2} \cdot x \Rightarrow x=\frac{p}{\sqrt{2}}
$$

\therefore Area of square is $x^{2}=\frac{p^{2}}{2} \mathrm{~cm}^{2}$.
2. Perimeter $=A B+B C+C D+$ length of arc $\widehat{\text { AED }}$

$$
\begin{aligned}
& =20+14+20+\pi \times(7) \\
& =76 \mathrm{~cm} .
\end{aligned}
$$

3. Perimeter $=$ Outer arc length + Inner arc length $+2 \times(14)$.

$$
\begin{aligned}
& =\frac{\pi \times 30^{\circ}}{180^{\circ}}(21+7)+28 \\
& =\frac{22}{7} \times \frac{28}{6}+28=\frac{44}{3}+28 \\
& =\frac{44+84}{3}=\frac{128}{3}=42 \frac{2}{3} \mathrm{~cm} .
\end{aligned}
$$

4. No.

The correct statement is: "Area of a segment of a circle = Area of the corresponding sector-Area of the corresponding triangle."
5. $154 \mathrm{~m}^{2}$

Hint: Find area of shaded part.

6. (i) $\frac{77}{8} \mathrm{~cm}^{2}$
(ii) $\frac{49}{8} \mathrm{~cm}^{2}$

Hint: Area of quadrant $=\frac{\pi r^{2}}{4}$
7. Length of arc $\overparen{\mathrm{AP}}=2 \pi r \times \frac{\theta}{360^{\circ}}$

$$
\begin{equation*}
=\frac{\pi r \theta}{180^{\circ}} \tag{i}
\end{equation*}
$$

Also $\quad \tan \theta=\frac{\mathrm{AB}}{\mathrm{OA}}=\frac{\mathrm{AB}}{r}$
$\Rightarrow \quad \mathrm{AB}=r \tan \theta$
Also $\quad \frac{\mathrm{OB}}{r}=\sec \theta \Rightarrow \mathrm{OB}=r \sec \theta$
$\Rightarrow \quad \mathrm{PB}=\mathrm{OB}-r=r \sec \theta-r \ldots$ (iii)
\therefore Perimeter of shaded part

$$
\begin{aligned}
& =(i)+(i i)+(i i i) \\
& =r \tan \theta+r \sec \theta-r+\frac{\pi r \theta}{180^{\circ}} \\
& =r\left[\tan \theta+\sec \theta+\frac{\pi \theta}{180^{\circ}}-1\right] .
\end{aligned}
$$

8. (i) Length of wire used

$$
\begin{aligned}
& =2 \pi r+5 \times(2 r) \\
& =2 \times \frac{22}{7} \times \frac{35}{2}+10 \times \frac{35}{2} \\
& =110+175=285 \mathrm{~mm} .
\end{aligned}
$$

(ii) Area of each sector

$$
\begin{aligned}
& =\frac{\pi r^{2} \theta}{360^{\circ}}=\frac{\frac{22}{7} \times \frac{35}{2} \times \frac{35}{2} \times 36^{\circ}}{360^{\circ}} \\
& =\frac{385}{4} \mathrm{~mm}^{2}
\end{aligned}
$$

WORKSHEET-115

1.

For area of largest triangle: Base of triangle $=$ diameter of circle $=2 r$ and height of triangle $=$ radius of circle $=r$
\therefore Area $=\frac{1}{2} \times(2 r)(r)=r^{2}$ sq. unit.
2. Hint: Area of shaded part

$$
\begin{aligned}
& =\frac{\pi \times 45^{\circ}}{360^{\circ}}\left[21^{2}-7^{2}\right] \\
& =154 \mathrm{~cm}^{2} .
\end{aligned}
$$

3. $228.57 \mathrm{~cm}^{2}$

Hint: Shaded portion
$=$ Area of quadrant - Area of square $A B C D$

$$
\begin{aligned}
\text { Radius } \mathrm{OB} & =20 \times \sqrt{2} \\
& =\text { Diagonal of square. }
\end{aligned}
$$

4. No, because radius of the largest circle must be $\frac{b}{2} \mathrm{~cm}$ such that the area will be $\frac{\pi b^{2}}{4} \mathrm{~cm}^{2}$.
5. As BC is diameter

$$
\Rightarrow \quad \angle \mathrm{BAC}=90^{\circ}
$$

$\Rightarrow \triangle \mathrm{BAC}$ is a right-angled triangle
$\therefore \mathrm{BC}^{2}=\mathrm{AC}^{2}+\mathrm{AB}^{2}$

$$
=(24)^{2}+(7)^{2}
$$

$$
=576+49=625
$$

$\Rightarrow \quad B C=25 \quad$ (diameter of circle)
$\therefore \quad \mathrm{BO}=\mathrm{OC}=\frac{1}{2} \times 25=\frac{25}{2} \mathrm{~cm}$ (Radius)
\therefore Required (shaded Area) $=$ Area of circle

- area of $\triangle \mathrm{BAC}$ - area of quadrant COD.

$$
\begin{aligned}
& =\pi r^{2}-\frac{1}{2} \times \mathrm{AB} \times \mathrm{AC}-\frac{1}{4} \pi r^{2} \\
& =\frac{3 \pi r^{2}}{4}-\frac{1}{2} \times 7 \times 24 \\
& =\frac{3 \times 3.14}{4} \times \frac{25}{2} \times \frac{25}{2}-84 \\
& =\frac{4.71 \times 625}{8}-84=\frac{4.71 \times 625-672}{8} \\
& =283.96 \mathrm{~cm}^{2} .
\end{aligned}
$$

OR

Area of shaded part $=$ Area of square ABCD $-2 \times$ (area of semicircles)

$$
\begin{aligned}
& =14 \times 14-2 \times\left(\frac{1}{2} \pi(7)^{2}\right) \\
& =196-\pi \times 7 \times 7 \\
& =196-\frac{22}{7} \times 7 \times 7 \\
& =196-154=42 \mathrm{~cm}^{2}
\end{aligned}
$$

6. Let $a=12 \mathrm{~cm}=$ side of equilateral $\triangle \mathrm{ABC}$ Let $r=$ radius of circle
$\therefore \operatorname{ar}(\triangle \mathrm{ABC})$
$=\operatorname{ar}(\triangle \mathrm{AOB})$
$+\operatorname{ar}(\triangle \mathrm{BOC})$
$+\operatorname{ar}(\Delta \mathrm{COA})$

$\Rightarrow \frac{\sqrt{3}}{4} \times(12)^{2}=\frac{1}{2} \times \mathrm{AB} \times r+\frac{1}{2} \times \mathrm{BC} \times r$ $+\frac{1}{2} \times \mathrm{AC} \times r$
$=\frac{1}{2} r(\mathrm{AB}+\mathrm{BC}+\mathrm{AC})$
$=\frac{1}{2} r(a+a+a)$
$=\frac{1}{2} r(12+12+12)$
$=\frac{1}{2} r \times 36$
$\Rightarrow \quad \frac{\sqrt{3}}{4} \times 144=18 r$
$\Rightarrow r=\frac{\sqrt{3}}{4} \times \frac{144}{18}=2 \sqrt{3} \mathrm{~cm}$
Area of shaded part

$$
\begin{aligned}
& =\operatorname{ar}(\Delta \mathrm{ABC})-\text { area of circle } \\
& =\frac{\sqrt{3}}{4} a^{2}-\pi r^{2} \\
& =\frac{\sqrt{3}}{4} \times 12 \times 12-3.14 \times(2 \sqrt{3})^{2} \\
& =36 \sqrt{3}-12 \times 3.14 \\
& =36 \times 1.73-12 \times 3.14 \\
& =24.638 \mathrm{~cm}^{2}
\end{aligned}
$$

7. Radius $=6 \mathrm{~cm}$
\therefore Diameter PS

$$
=2 \times 6=12 \mathrm{~cm}
$$

Also, $\mathrm{PQ}=\mathrm{QR}=\mathrm{RS}$

$$
=\frac{12}{3}=4 \mathrm{~cm}
$$

Perimeter $=$ length of $\overparen{P Q}+$ length of $\overparen{\mathrm{QS}}$

+ length of $\overparen{P S}$

$$
=\pi[2+4+6]=12 \times \frac{22}{7}=37.71 \mathrm{~cm}
$$

$$
\begin{aligned}
\text { Area } & =\frac{\pi}{2}(6)^{2}-\frac{\pi}{2}(4)^{2}+\frac{\pi}{2}(2)^{2} \\
& =\frac{\pi}{2}(36-16+4)=\frac{22}{7 \times 2} \times 24 \\
& =\frac{528}{2 \times 7}=\frac{264}{7}=37.71 \mathrm{~cm}^{2}
\end{aligned}
$$

8. (i) Perimeter of sector $=2 r+$ Arc length

$$
\begin{array}{lrl}
& =2 \times 5.7+\frac{\pi r \theta}{180^{\circ}} \\
& \therefore \quad 27.2 & =11.4+\frac{\pi r \theta}{180^{\circ}} \\
\Rightarrow \quad & \frac{\pi r \theta}{180^{\circ}} & =27.2-11.4=15.8 \mathrm{~m} \\
& \therefore \quad \text { Arc length } & =1580 \mathrm{~cm} . \\
& &
\end{array}
$$

Hint: Area of sector $=\frac{1}{2} l r$.

WORKSHEET- 116

$$
\text { 1. } \begin{aligned}
2 \pi r-r & =37 \mathrm{~cm} \\
\Rightarrow \quad r(2 \pi-1) & =37 \\
r\left(2 \times \frac{22}{7}-1\right) & =37 \\
r\left(\frac{44-7}{7}\right) & =37 \\
r \times \frac{37}{7} & =37 \\
r & =7 \mathrm{~cm}
\end{aligned}
$$

\therefore Circumference $=2 \pi r$

$$
=2 \times \frac{22}{7} \times 7=44 \mathrm{~cm} .
$$

2. Hint: $\quad 2 \pi r=2 \pi r_{1}+2 \pi r_{2}$

$$
\begin{aligned}
\Rightarrow \quad r & =r_{1}+r_{2} \\
& =19+9=28 \mathrm{~cm}
\end{aligned}
$$

3. False, because radii are different so their areas will also be different if their corresponding arc lengths are equal.
4. Area of shaded part $=$ area of square - area of quadrant

$$
\begin{aligned}
& =(7)^{2}-\frac{1}{4} \pi(7)^{2} \\
& =49-\frac{1}{4} \times \frac{22}{7} \times 7 \times 7 \\
& =49-\frac{11}{2} \times 7 \\
& =49-\frac{77}{2}=49-38.5=10.5 \mathrm{~cm}^{2}
\end{aligned}
$$

5. Shaded part $=$ Area of square $-4 \times$ Area of circle

$$
\begin{aligned}
& =(14)^{2}-4\left(\pi r^{2}\right) \\
& =196-4 \times \frac{22}{7} \times \frac{7}{2} \times \frac{7}{2} \\
& =196-154=42 \mathrm{~cm}^{2}
\end{aligned}
$$

OR

Length of arc $\mathrm{AEB}=\pi \times \frac{2.8}{2}=1.4 \pi \mathrm{~cm}$.
Length of arc BFC $=\pi \times \frac{1.4}{2}=0.7 \pi \mathrm{~cm}$.
Length of arc $\mathrm{ADC}=\pi \frac{2.8+1.4}{2}=2.1 \pi \mathrm{~cm}$
Now, perimeter of shaded region
= Sum of lengths of the arcs AEB, BFC and ADC
$=1.4 \pi+0.7 \pi+2.1 \pi$
$=4.2 \pi=4.2 \times \frac{22}{7}=13.2 \mathrm{~cm}$.
6. Let $\mathrm{OP}=\mathrm{R}=7 \mathrm{~cm}$
$\mathrm{OA}=r=3.5 \mathrm{~cm}$
$\angle \mathrm{POQ}=30^{\circ}$
\therefore Area of shaded part $=$ Area of sector OPQO - Area of sector OABO

$$
\begin{aligned}
& =\frac{\pi R^{2} \theta}{360^{\circ}}-\frac{\pi r^{2} \theta}{360^{\circ}}=\frac{\pi \theta}{360^{\circ}}\left[\mathrm{R}^{2}-r^{2}\right] \\
& =\frac{22}{7} \times \frac{30}{360^{\circ}}\left[7^{2}-(3.5)^{2}\right] \\
& =\frac{11}{42}[49-12.25]
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{11}{42}[36.75]=\frac{11 \times 5.25}{6} \\
& =\frac{57.75}{6}=9.625 \mathrm{~cm}^{2} .
\end{aligned}
$$

7. $88.44 \mathrm{~cm}^{2}$

Hint: Use $\frac{\pi r^{2} \theta}{360^{\circ}}-\frac{1}{2} r^{2} \sin \theta$
$\sin 120^{\circ}=\sin 60^{\circ}=\frac{\sqrt{3}}{2}$.
$8.66 .5 \mathrm{~cm}^{2}$
Hint: See solved example 7.

WORKSHEET - 17

1.

$$
2 \pi r=22 \mathrm{~cm}
$$

$$
\Rightarrow \quad r=\frac{22}{7}=\frac{11}{\pi}
$$

$\therefore \quad$ Area of quadrant $=\frac{1}{4} \pi r^{2}$

$$
\begin{aligned}
& =\frac{1}{4} \times \pi \times \frac{11}{\pi} \times \frac{11}{\pi} \\
& =\frac{11 \times 11}{4 \times 22} \times 7=\frac{77}{8} .
\end{aligned}
$$

2.

$$
\begin{aligned}
2 \pi r & =22 \\
\Rightarrow \quad r & =\frac{22}{2 \pi}=\frac{11}{\pi}
\end{aligned}
$$

$\therefore \quad$ Area of quadrant $=\frac{1}{4} \pi r^{2}$

$$
\begin{aligned}
& =\frac{1}{4} \times \pi \times \frac{11}{\pi} \times \frac{11}{\pi} \\
& =\frac{121}{4 \pi} \mathrm{~cm}^{2}
\end{aligned}
$$

3. Area of shaded part $=$ Area of rectangle

+ Area of semicircle

$$
\begin{aligned}
& =(8 \times 4)+\frac{1}{2} \pi r^{2} \\
& \quad\{\because \text { Radius of circle }=6-4=2 \mathrm{~m} .\} \\
& =32+\frac{\pi(2)^{2}}{2}=(32+2 \pi) \mathrm{cm}^{2}
\end{aligned}
$$

4. True.

Hint: $\angle \mathrm{AOB}=60^{\circ}$

$$
\operatorname{ar}(\Delta \mathrm{OAB})=\frac{\sqrt{3}}{4} \times(\text { side })^{2}
$$

5. Let $A_{1}=$ area of circle with radius $=14 \mathrm{~cm}$

$$
=\pi(14)^{2}=196 \pi \mathrm{~cm}^{2}
$$

$\mathrm{A}_{2}=$ area of circle with radius $=7 \mathrm{~cm}$ $=\pi(7)^{2}=49 \pi \mathrm{~cm}^{2}$

$$
\mathrm{A}_{3}=\text { area of sector } \mathrm{BOD}=\frac{\pi(7)^{2} \times 40}{360}
$$

and $\mathrm{A}_{4}=$ area of sector $\mathrm{AOC}=\frac{\pi(14)^{2} \times 40}{360}$
Let $\quad A_{5}=\left(A_{4}-A_{3}\right)=$ Area of $A B D C A$

$$
\begin{aligned}
& =\frac{\pi \times 40}{360}\left[14^{2}-7^{2}\right] \\
& \left.=\frac{\pi}{9}[21 \times 7]\right]=\frac{49}{3} \pi \mathrm{~cm}^{2}
\end{aligned}
$$

\therefore Area of shaded part

$$
\begin{aligned}
& =\left(\mathrm{A}_{1}-\mathrm{A}_{2}\right)-\mathrm{A}_{5} \\
& =(196 \pi-49 \pi)-\frac{49}{3} \pi=147 \pi-\frac{49}{3} \pi \\
& =\left(147-\frac{49}{3}\right) \times \pi=\left(\frac{441-49}{3}\right) \times \frac{22}{7} \\
& =\frac{392}{3} \times \frac{22}{7}=\frac{56 \times 22}{3} \\
& =410.66 \mathrm{~cm}^{2} .
\end{aligned}
$$

6. (i) The horse can graze in the shape of a quadrant of a circle with radius 5 m
\therefore Required area $=\frac{1}{4} \pi \times(\text { radius })^{2}$

$$
\begin{aligned}
& =\frac{1}{4} \times 3.14 \times 5 \times 5 \\
& =19.625 \mathrm{~m}^{2} .
\end{aligned}
$$

(ii) Radius of quadrant of circle
$=$ Length of the rope $=10 \mathrm{~m}$
Area of the sector $=\frac{1}{4} \times \pi \times 10^{2}$

$$
\begin{aligned}
& =\frac{1}{4} \times 3.14 \times 100 \\
& =78.50 \mathrm{~m}^{2}
\end{aligned}
$$

So, the increase in the grazing area

$$
\begin{aligned}
& =(78.50-19.625) \mathrm{m}^{2} \\
& =58.875 \mathrm{~m}^{2} .
\end{aligned}
$$

7. Let us mark the four unshaded parts as I, II, III, IV in figure.

\therefore Area of $\mathrm{I}+$ area of $\mathrm{III}=$ area of $\mathrm{ABCD}-$ area of two semicircles of radius 5 cm each.

$$
\begin{aligned}
& =100-3.14 \times 25 \\
& =21.5 \mathrm{~cm}^{2}
\end{aligned}
$$

Similarly, area of II + area of IV $=21.5 \mathrm{~cm}^{2}$ Area of shaded part

$$
\begin{aligned}
& =\operatorname{ar}(\mathrm{ABCD})-\operatorname{ar}(\mathrm{I}+\mathrm{II}+\mathrm{III}+\mathrm{IV}) \\
& =100-2 \times 21.5 \\
& =57 \mathrm{~cm}^{2}
\end{aligned}
$$

8. Radius of the circle having $A B C$ as quadrant

$$
=\mathrm{AB}=\mathrm{AC}=14 \mathrm{~cm}
$$

Area of this quadrant $\mathrm{ABC}=\frac{1}{4} \times \pi \times 14^{2}$

$$
=49 \pi \mathrm{~cm}^{2}
$$

Area of isosceles $\triangle \mathrm{ABC}=\frac{1}{2} \times \mathrm{AC} \times \mathrm{AB}$

$$
\begin{aligned}
& =\frac{1}{2} \times 14 \times 14=98 \mathrm{~cm}^{2} \\
B C & =\sqrt{\mathrm{AB}^{2}+\mathrm{AC}^{2}} \\
& =\sqrt{14^{2}+14^{2}}=14 \sqrt{2} \mathrm{~cm} .
\end{aligned}
$$

Area of semicircle having diameter as BC

$$
\begin{aligned}
& =\frac{1}{2} \pi \times\left(\frac{14 \sqrt{2}}{2}\right)^{2} \\
& =\frac{1}{2} \pi \times(7 \sqrt{2})^{2}=49 \pi \mathrm{~cm}^{2}
\end{aligned}
$$

Now, area of shaded region $=$ Area of $\triangle A B C+$ Area of the semicircle with $B C$ as diameter - Area of quadrant ABC

$$
=98+49 \pi-49 \pi=98 \mathrm{~cm}^{2} .
$$

WORKSHEET - 118

1. Angle $=\frac{360^{\circ}}{60} \times 35=210^{\circ}$.
2. Perimeter of square
= Circumference of circle

$$
=2 \pi r=2 \times \frac{22}{7} \times 21=132 \mathrm{~cm}
$$

\therefore Side of the square $=\frac{132}{4}=33 \mathrm{~cm}$.
3. Let O be the centre of circle

In $\triangle \mathrm{OBD}, \cos 60^{\circ}=\frac{\mathrm{OD}}{\mathrm{OB}}$
and $\sin 60^{\circ}=\frac{\mathrm{BD}}{\mathrm{OB}}$

$\Rightarrow \quad \frac{\mathrm{OD}}{32}=\frac{1}{2}$ and $\frac{\sqrt{3}}{2}=\frac{\mathrm{BD}}{32}$
$\Rightarrow \quad \mathrm{OD}=16$ and $\mathrm{BD}=16 \sqrt{3}$
$\Rightarrow \quad B C=2 B D=32 \sqrt{3}$
$\therefore \quad$ Area of design
$=$ Area of circle - Area of $\triangle A B C$
$=\left\{\pi \times 32^{2}-\frac{\sqrt{3}}{4} \times(32 \sqrt{3})^{2}\right\} \mathrm{cm}^{2}$
$=32^{2} \times\left(3.14-\frac{3 \times 1.73}{4}\right) \mathrm{cm}^{2}$
$=1024 \times\left(\frac{12.56-5.19}{4}\right) \mathrm{cm}^{2}$
$=256 \times 7.37=1886.72 \mathrm{~cm}^{2}$.
4. Area of remaining paper
= ar of rectangle $\mathrm{ABCD}-$ ar of semicircle with diameter BC

$$
\begin{aligned}
& =40 \times 28-\frac{\pi}{2}(14)^{2} \\
& =1120-\frac{22}{2 \times 7} \times 14 \times 14 \\
& =1120-308=812 \mathrm{~cm}^{2}
\end{aligned}
$$

5.

(i) The distance around the track along the inner edge $=106+106+(\pi \times 30+\pi \times 30)$
$(\because$ Inner radius $=30 \mathrm{~m})$
$=212+\frac{22}{7} \times 60$
$=212+\frac{1320}{7}=\frac{2804}{7} \mathrm{~m}=400 \frac{4}{7} \mathrm{~m}$.
(ii) The area of track

$$
\begin{aligned}
& =(106 \times 80-106 \times 60)+2 \times \frac{\pi}{2}\left[40^{2}-30^{2}\right] \\
& =2120+700 \times \frac{22}{7} \\
& =2120+2200=4320 \mathrm{~m}^{2} .
\end{aligned}
$$

6. We have, area of the shaded region
$=$ Area of the circle with $\mathrm{OB}(=7 \mathrm{~cm})$ as diameter + Area of semicircle with $C D$ as diameter - Area of $\triangle \mathrm{ACD}$

$$
\begin{aligned}
& =\pi \times\left(\frac{7}{2}\right)^{2}+\frac{1}{2} \times \pi \times(7)^{2}-\frac{1}{2} \times \mathrm{CD} \times \mathrm{OA} \\
& =\left\{\frac{\pi}{4} \times 49+\frac{\pi}{2} \times 49-\frac{1}{2} \times 14 \times 7\right\} \mathrm{cm}^{2} \\
& =\left(\frac{3 \pi}{4} \times 49-49\right) \mathrm{cm}^{2} \\
& =\left(\frac{3}{4} \times \frac{22}{7} \times 49-49\right) \mathrm{cm}^{2} \\
& =\frac{231-98}{2} \mathrm{~cm}^{2}=66.5 \mathrm{~cm}^{2} .
\end{aligned}
$$

7. With the given information, $\triangle A B C$ is an equilateral \triangle having sides 10 cm .
$\therefore \quad \mathrm{AB}=\mathrm{BC}=\mathrm{CA}=10 \mathrm{~cm}$
and $\quad \angle \mathrm{A}=\angle \mathrm{B}=\angle \mathrm{C}=60^{\circ}$
$\therefore \mathrm{E}, \mathrm{F}$ and D are the mid-points of AC, AB and BC , respectively and therefore $\mathrm{AE}=\mathrm{EC}$ $=\mathrm{CD}=\mathrm{DB}=\mathrm{DF}=\mathrm{FA}=5 \mathrm{~cm}=r$ (Let)
\therefore Area of sector $\mathrm{BDF}=\frac{\theta}{360^{\circ}} \pi r^{2}$

$$
\begin{aligned}
& =\frac{60^{\circ}}{360^{\circ}} \times 3.14 \times(5)^{2} \\
& =\frac{1}{6} \times 3.14 \times 25=13.08 \mathrm{~cm}^{2}
\end{aligned}
$$

\therefore Area of total shaded region

$$
\begin{aligned}
& =3 \text { (Area of sector BDF) } \\
& =3 \times 13.08=39.24 \mathrm{~cm}^{2}
\end{aligned}
$$

8. Speed of bus $=40 \mathrm{~km} / \mathrm{h}$
\therefore Distance covered in $1 \mathrm{hr}=40 \mathrm{~km}$
\therefore Distance covered in $1 \mathrm{~min}=\frac{40 \times 1000}{60} \mathrm{~m}$

$$
=\frac{4000}{6} \mathrm{~m}=\frac{2000}{3} \mathrm{~m} .
$$

Now radius of wheel $=\frac{126}{2}=63 \mathrm{~cm}$
\therefore Distance covered in one revolution

$$
\begin{aligned}
& =\text { circumference }=2 \pi r \\
& =2 \times \frac{22}{7} \times 63=44 \times 9 \\
& =396 \mathrm{~cm}=\frac{396}{100} \mathrm{~m}=3.96 \mathrm{~m}
\end{aligned}
$$

$\therefore 3.96 \mathrm{~m}$ distance makes $=1$ revolution
1 m distance makes $=\frac{1}{3.96}$ revolution $\frac{2000}{3} \mathrm{~m}$ distance makes $=\frac{1}{3.96} \times \frac{2000}{3}$ revolutions

$$
\begin{aligned}
& =\frac{200000}{1188} \text { revolutions } \\
& =168.35 \text { revolutions (approx.) }
\end{aligned}
$$

\therefore Number of complete rotations taken by wheel per \min is $=168$.
(ii) Circumference of circle.
(iii) Responsible.

WORKSHEET - 119

1. $\pi r^{2}=1.54 \Rightarrow r^{2}=\frac{1.54}{22} \times 7 \Rightarrow r=0.7 \mathrm{~m}$ Number of revolutions $=\frac{176}{2 \times \frac{22}{7} \times 0.7}=40$.
2. This rhombus must be a square with diagonals as the diameters of the circle.

$$
\begin{array}{rlrl}
& \pi r^{2} & =1256 \\
\Rightarrow & r^{2}=\frac{1256 \times 7}{22} \Rightarrow r & =20 \mathrm{~cm} \text { (approx.) } \\
\therefore & & \text { Diameters } & =d_{1}=d_{2}=40 \mathrm{~cm}
\end{array}
$$

\therefore Area of the rhombus $=\frac{1}{2} \times d_{1} \times d_{2}$

$$
\begin{aligned}
& =\frac{1}{2} \times 40 \times 40 \\
& =800 \mathrm{~cm}^{2} .
\end{aligned}
$$

3. Minutes elapsed by minute hand

$$
=6.40-6.05=35
$$

\because Angle covered by minute hand in 60 minutes

$$
=360^{\circ}
$$

\therefore Angle covered by minute hand in

$$
\begin{aligned}
35 \text { minutes } & =\frac{360^{\circ}}{60^{\circ}} \times 35=210^{\circ} \\
\therefore \quad \text { Area } & =\pi r^{2} \times \frac{210^{\circ}}{360^{\circ}} \\
& =\frac{22}{7} \times 5^{2} \times \frac{7}{12}=\frac{275}{6} \\
& =45 \frac{5}{6} \mathrm{~cm}^{2} .
\end{aligned}
$$

4. True, because when areas are equal, the radii are equal and so circumferences are equal.
5. In $\triangle \mathrm{AOB}, \mathrm{AB}^{2}=20^{2}=400$

$$
\begin{array}{rlrl}
\text { And } & & \mathrm{AO}^{2}+\mathrm{BO}^{2} & =(10 \sqrt{2})^{2}+(10 \sqrt{2})^{2} \\
& =400 \\
\text { i.e., } & \mathrm{AO}^{2}+\mathrm{BO}^{2} & =\mathrm{AB}^{2} \Rightarrow \angle \mathrm{AOB}=90^{\circ} \\
\therefore & & \operatorname{ar}(\triangle \mathrm{AOB}) & =\frac{1}{2} \times \mathrm{AO} \times \mathrm{BO} \\
& & & =\frac{1}{2} \times 10 \sqrt{2} \times 10 \sqrt{2} \\
& & & 100 \mathrm{~cm}^{2}
\end{array}
$$

$$
\begin{aligned}
\operatorname{ar}(\text { sector } \mathrm{AOB}) & =\pi \times(\mathrm{AO})^{2} \times \frac{90^{\circ}}{360^{\circ}} \\
& =50 \pi \mathrm{~cm}^{2}
\end{aligned}
$$

$\operatorname{ar}($ rectangle ABCD$)=\mathrm{AB} \times \mathrm{BC}$

$$
=20 \times 10=200 \mathrm{~cm}^{2}
$$

Now, area of the shaded region

$$
\begin{aligned}
& \quad=a r(\text { rectangle } \mathrm{ABCD}) \\
& -\operatorname{ar}(\text { sector AOB })+\operatorname{ar}(\triangle \mathrm{AOB}) \\
& \quad=200-50 \pi+100 \\
& \quad=300-50 \pi=50(6-\pi) \mathrm{cm}^{2} .
\end{aligned}
$$

6. Area of shaded part

$$
\begin{aligned}
& =\text { Area of semicircle }- \text { Area } \triangle A B C \\
& =\frac{1}{2} \pi r^{2}-\frac{1}{2} \times \mathrm{BC} \times \mathrm{AC} \text {. } \\
& =\frac{1}{2}\left[\pi\left(\frac{13}{2}\right)^{2}-5 \times 12\right] \\
& {\left[\because \text { As } \angle C=90^{\circ}\right.} \\
& \Rightarrow A B^{2}=A C^{2}+B C^{2} \\
& \Rightarrow 13^{2}=12^{2}+\mathrm{BC}^{2} \\
& \Rightarrow 169-144=\mathrm{BC}^{2} \\
& \Rightarrow \mathrm{BC}^{2}=25 \\
& \Rightarrow B C=5 \mathrm{~cm} \text {] } \\
& =\frac{1}{2}\left[3.14 \times(6.5)^{2}-60\right] \\
& =\frac{1}{2}[132.665-60]=\frac{1}{2}[72.665] \\
& =36.33 \mathrm{~cm}^{2} \text { (approx). }
\end{aligned}
$$

7. Area of square $\mathrm{ABCD}=\mathrm{BC}^{2}$

$$
=14^{2}=196 \mathrm{~cm}^{2}
$$

EFG, GHI, IJK and KLE are four semicircles of radius $\frac{14-3-3}{4}=2 \mathrm{~cm}$ each.
EGIK is a square of side as the diameter of either circle, that is, 4 cm .

Sum of areas of the four semicircles

$$
\begin{aligned}
& =4 \times \text { area of one semicircle } \\
& =4 \times \frac{1}{2} \pi \times 2^{2}=8 \pi \mathrm{~cm}^{2}
\end{aligned}
$$

Area of square EGIK $=(\text { Side })^{2}=4^{2}=16 \mathrm{~cm}^{2}$ Now, area of shaded region

$$
\begin{aligned}
= & \text { Area of square ABCD } \\
& - \text { Sum of areas of four } \\
& \text { circles }- \text { Area of square } \\
= & 196-8 \pi-16 \\
= & (180-8 \pi) \mathrm{cm}^{2} .
\end{aligned}
$$

- Sum of areas of four semicircles - Area of square EGIK

8. In right $\triangle A B C$,

$$
\mathrm{AC}^{2}=\mathrm{AB}^{2}+\mathrm{BC}^{2}
$$

(Pythagoras theorem)

$$
\begin{aligned}
& \Rightarrow \quad \mathrm{AC}^{2}=14^{2}+14^{2} \\
& \Rightarrow \quad A C=14 \sqrt{2} \mathrm{~cm} \\
& \operatorname{ar}(\triangle \mathrm{ABC})=\frac{1}{2} \times \text { Base } \times \text { Height } \\
& =\frac{1}{2} \times 14 \times 14 \\
& =98 \mathrm{~cm}^{2}
\end{aligned}
$$

Radius of quadrant $\mathrm{ABCP}=\mathrm{AB}=\mathrm{BC}=$ 14 cm
ar (quadrant ABCP)

$$
\begin{aligned}
& =\frac{1}{4} \times \text { Area of corresponding } \\
& =\frac{1}{4} \times \pi(\mathrm{AB})^{2}=\frac{1}{4} \times \frac{22}{7} \times 14 \times 14 \\
& =154 \mathrm{~cm}^{2}
\end{aligned}
$$

$\operatorname{ar}($ semicircle ACQ$)=\frac{1}{2} \times \pi \times\left(\frac{\mathrm{AC}}{2}\right)^{2}$

$$
\begin{aligned}
& =\frac{1}{2} \times \frac{22}{7} \times \frac{14 \sqrt{2}}{2} \times \frac{14 \sqrt{2}}{2} \\
& \quad[\because A C=14 \sqrt{2}] \\
& =154 \mathrm{~cm}^{2}
\end{aligned}
$$

Now, area of shaded portion

$$
\begin{aligned}
= & \operatorname{ar}(\text { semicircle ACQ }) \\
& -\operatorname{ar}(\text { quadrant } \mathrm{ABCP}) \\
& +\operatorname{ar}(\triangle \mathrm{ABC}) \\
= & 154-154+98=98 \mathrm{~cm}^{2} .
\end{aligned}
$$

Hence, area of shaded portion is $98 \mathrm{~cm}^{2}$.

CHAPTER TEST

1. Two vertices of the triangle should coincide with the two extremities of the diameter of the
 semicircle and the third one lies on the curve.

$$
\begin{aligned}
\operatorname{ar}(\triangle \mathrm{ABC}) & =\frac{1}{2} \times \mathrm{BC} \times \mathrm{AO} \\
& =\frac{1}{2} \times 2 r \times r \\
& =r^{2} \text { sq. units. }
\end{aligned}
$$

2. Hint: Diameter of circle $=16 \mathrm{~cm}$
$\therefore \quad$ Diagonal of a square $=\sqrt{2} \times$ side.

$$
\begin{aligned}
\sqrt{2} \times \text { side } & =16 \\
\text { side } & =8 \sqrt{2} \\
\therefore \quad \text { Area of square } & =(8 \sqrt{2})^{2} \\
& =128 \mathrm{~cm}^{2} .
\end{aligned}
$$

3. Let radius of given circle and side of given square be r and a respectively.
Perimeter of the circle $=$ perimeter of the square

$$
\Rightarrow \quad 2 \pi r=4 a \Rightarrow r=\frac{2 a}{\pi}
$$

Required ratio $=\frac{\pi r^{2}}{a^{2}}=\frac{\pi}{a^{2}} \times \frac{4 a^{2}}{\pi^{2}}$

$$
=\frac{4}{\pi}=\frac{4}{\frac{22}{7}}=\frac{14}{11}
$$

i.e., $14: 11$.
4. True.

Let radius of smaller circle $=r=\frac{5}{2}$
Let radius of larger circle $=R=\sqrt{2} \cdot\left(\frac{5}{2}\right)$
\therefore Ratio of areas $=\frac{\pi \mathrm{R}^{2}}{\pi r^{2}}=\frac{2\left(\frac{5}{2}\right)^{2}}{\left(\frac{5}{2}\right)^{2}}=2: 1$.
5. In 24 hrs , number of complete revolution taken by hour hand $=2$ and number of complete revolution taken by minute hand $=24$
\therefore Distance travelled by hour hand in 24 hrs $=2 \times(2 \pi r)$

$$
\begin{aligned}
& =2 \times \pi(4) \times(2) \\
& =16 \pi \mathrm{~cm}
\end{aligned}
$$

Also distance travelled by minute hand in 24 hrs

$$
=2 \pi \times(6) \times 24=288 \pi \mathrm{~cm}
$$

\therefore Sum of distances travelled

$$
\begin{aligned}
& =16 \pi+288 \pi=304 \pi \\
& =304 \times 3.14=954.56 \mathrm{~cm}
\end{aligned}
$$

6. Let the angle subtended by arc at the centre be θ.

$$
\begin{gathered}
\text { Area of sector }=54 \pi \\
\Rightarrow \\
\frac{\theta}{360^{\circ}} \times \pi \times(\text { Radius })^{2}=54 \pi \\
\Rightarrow \quad \frac{\theta}{360^{\circ}} \times \pi \times(36)^{2}=54 \pi \\
\Rightarrow \\
\theta=360^{\circ} \times \frac{54}{36 \times 36}=15^{\circ}
\end{gathered}
$$

Now, length of the arc $=$ Radius \times Angle in radian

$$
=36 \times \frac{15^{\circ}}{180^{\circ}} \times \pi=3 \pi \mathrm{~cm}
$$

7. Area of the park $=31.15 \times 4.40 \mathrm{~m}^{2}$

$$
=3115 \times 440 \mathrm{~cm}^{2}
$$

Radius of circle covered by each plant of one type, $r_{1}=\frac{56}{2}=28 \mathrm{~cm}$
\therefore corresponding area $=\pi r_{1}^{2}$

$$
=\frac{22}{7} \times 28 \times 28=2464 \mathrm{~cm}^{2}
$$

Radius of circle covered by each plant of another type, $r_{2}=35 \mathrm{~cm}$
\therefore corresponding area $=\pi r_{2}^{2}$

$$
=\frac{22}{7} \times 35 \times 35=3850 \mathrm{~cm}^{2}
$$

Let the number of plants of one type and another type be m and n respectively.
Total covered area $=m \times 2464+n \times 3850$
Uncovered area $=4 m \times 2464+4 n \times 3850$
Total area of the park must be equal to the sum of covered and uncovered area.
$\therefore 2464 m+3850 n+4 \times 2464 m+4 \times 3850$
$n=3115 \times 440$
$\Rightarrow 5 \times 2464 \mathrm{~m}+5 \times 3850 \mathrm{n}=3115 \times 440$
Dividing by 10 , we get
$1232 m+1925 n=3115 \times 44$
or $1232 m+1925 n=137060$
According to the given number of plants, we have

$$
\begin{align*}
& m+n=100 \tag{ii}\\
& \text { or } \quad 1232 m+1232 n=123200 \tag{iii}
\end{align*}
$$

Subtracting (iii) from (i), we get

$$
693 n=13860 \Rightarrow n=\frac{13860}{693}=20
$$

So, from (ii), we get

$$
\therefore \quad m=100-n=100-20=80
$$

Hence, the required number of plants of each type are 80 and 20 respectively.
(ii) Area of circle
(iii) Love for plants, keeping environment neat and clean, and become a social worker.
8. See Worksheet119, Sol. 7.

WORKSHEET-121
1.

$\mathrm{V}_{1}=$ Volume of smaller cone $=\frac{1}{3} \pi r^{2} h$
$\mathrm{V}_{2}=$ Volume of bigger cone $=\frac{1}{3} \pi \mathrm{R}^{2} \mathrm{H}$

$$
\begin{array}{ll}
\text { as } & \mathrm{H}=2 h \\
\Rightarrow & \frac{\mathrm{H}}{h}=\frac{2}{1} \Rightarrow \frac{h}{\mathrm{H}}=\frac{1}{2}
\end{array}
$$

Also then $\frac{r}{\mathrm{R}}=\frac{1}{2}$

$$
\begin{aligned}
\therefore \quad \frac{\mathrm{V}_{1}}{\mathrm{~V}_{2}} & =\frac{\frac{1}{3} \pi r^{2} h}{\frac{1}{3} \pi \mathrm{R}^{2} \mathrm{H}}=\left(\frac{r}{\mathrm{R}}\right)^{2}\left(\frac{h}{\mathrm{H}}\right) \\
& =\left(\frac{1}{2}\right)^{2}\left(\frac{1}{2}\right)=\frac{1}{8}=1: 8 .
\end{aligned}
$$

2. Volume of big sphere

$$
\mathrm{V}_{1}=\frac{4}{3} \pi(3)^{3}
$$

Volume of 1 small sphere

$$
\mathrm{V}_{2}=\frac{4}{3} \pi(0.3)^{3}
$$

\therefore Number of balls obtained

$$
=\frac{V_{1}}{V_{2}}=\frac{27}{0.027}=1000
$$

3.3:1.

Hint: Volume of cylinder $=\mathrm{V}_{1}=\pi r^{2} h$
Volume of cone $=\mathrm{V}_{2}=\frac{1}{3} \pi r^{2} h$

$$
\therefore \quad \mathrm{V}_{1}: \mathrm{V}_{2}=1: \frac{1}{3}=3: 1 .
$$

4. Number of cones formed
$=\frac{\text { Volume of sphere of radius } 10.5 \mathrm{~cm}}{\text { Volume of smaller cone }}$
$=\frac{\frac{4}{3} \pi(10.5)^{3}}{\frac{1}{3} \pi(3.5)^{2} \times 3}=\frac{4 \times 10.5 \times 10.5 \times 10.5}{3.5 \times 3.5 \times 3}$
$=\frac{4 \times 105 \times 105 \times 3.5 \times 10}{35 \times 10 \times 10}$
$=\frac{12 \times 105}{10}=\frac{1260}{10}=126$.
5. Let $r_{1}=$ radius of conical vessel $=5 \mathrm{~cm}$ $h_{1}=$ height of conical vessel $=24 \mathrm{~cm}$ $r_{2}=$ radius of cylindrical vessel $=10 \mathrm{~cm}$ $h_{2}=$ height of cylindrical vessel $=$?
Let Volume of conical vessel $=$ Volume of cylindrical vessel
$\Rightarrow \frac{1}{3} \pi r_{1}^{2} h_{1}=\pi r_{2}^{2} h_{2}$
$\Rightarrow(5)^{2} \times 24=3 \times(10)^{2} \times h_{2}$
$\Rightarrow \quad h_{2}=\frac{25 \times 24}{3 \times 10 \times 10}=\frac{25 \times 8}{100}=2 \mathrm{~cm}$
\therefore Water will rise up to a height of 2 cm .
6. Volume of earth dug out $=\pi r^{2} h$
$=\frac{22}{7} \times 7 \times 7 \times 20=154 \times 20=3080 \mathrm{~m}^{3}$
Area of platform $=22 \times 14-\pi r^{2}$

$$
\begin{aligned}
& =22 \times 14-\frac{22}{7} \times 7^{2} \\
& =154 \mathrm{~m}^{2}
\end{aligned}
$$

Now, height of the platform

$$
\begin{aligned}
& =\frac{\text { Volume of earth dug out }}{\text { Area of platform }} \\
& =\frac{3080}{154}=20 \mathrm{~m} .
\end{aligned}
$$

7. (i) Volume of water collected on roof top = Volume of water stored in cylinder
\therefore Volume of water stored in cylinder

$$
\begin{aligned}
& =l \times b \times h=22 \times 20 \times \frac{2.5}{100} \\
& =\frac{22 \times 20 \times 25}{1000}=\frac{11000}{1000}=11 \mathrm{~m}^{3}
\end{aligned}
$$

(ii) Let $h=$ height of cylinder

$$
\begin{aligned}
\therefore & & \pi r^{2} h & =11 \\
& & \frac{22}{7} \times 1 \times 1 \times h & =11 \\
\Rightarrow & & h & =\frac{11 \times 7}{22}=3.5 \mathrm{~m} .
\end{aligned}
$$

(iii) Surface area and volume of solids.
(iv) Proactive and resourceful.
8. $\mathrm{VO}=$ height $=20 \mathrm{~cm}$
$\therefore \mathrm{VO}^{\prime}=\mathrm{O}^{\prime} \mathrm{O}=10 \mathrm{~cm}$

\therefore In triangles VOA and $\mathrm{VO}^{\prime} \mathrm{A}^{\prime}$ $\tan 30^{\circ}=\frac{\mathrm{OA}}{\mathrm{VO}}$ and $\tan 30^{\circ}=\frac{\mathrm{O}^{\prime} \mathrm{A}^{\prime}}{\mathrm{VO}^{\prime}}$
$\Rightarrow \frac{1}{\sqrt{3}}=\frac{r_{1}}{20}$ and $\frac{1}{\sqrt{3}}=\frac{r_{2}}{10}$
$\Rightarrow \quad r_{1}=\frac{20}{\sqrt{3}} \mathrm{~cm}$ and $r_{2}=\frac{10}{\sqrt{3}} \mathrm{~cm}$
\therefore Volume of frustum $=\frac{1}{3} \pi\left(r_{1}^{2}+r_{2}^{2}+r_{1} r_{2}\right) h$

$$
\begin{aligned}
& =\frac{\pi}{3}\left(\frac{400}{3}+\frac{100}{3}+\frac{200}{3}\right) \times 10 \\
& =\frac{7000}{9} \pi \mathrm{~cm}^{3}
\end{aligned}
$$

Now, let length of wire be $l \mathrm{~cm}$, diameter is $\frac{1}{12} \mathrm{~cm}$
\therefore Volume of metal used in wire

$$
\begin{aligned}
& =\pi \times\left(\frac{1}{24}\right)^{2} \times l \\
& \Rightarrow \frac{7000}{9} \pi=\frac{\pi l}{24 \times 24} \\
& \Rightarrow \quad l=\frac{7000 \times 24 \times 24}{9} \mathrm{~cm} \\
& \Rightarrow \quad l=\frac{70 \times 24 \times 24}{9} \mathrm{~m} \\
& \Rightarrow \quad l=70 \times 64 \\
& =4480 \mathrm{~m} \text {. }
\end{aligned}
$$

WORKSHEET-122

1. Volume of sphere $=\frac{4}{3} \pi(3)^{3}$

Let length of wire $=l$.
Radius of wire $(r)=\frac{4}{2}=2 \mathrm{~mm}=\frac{2}{10} \mathrm{~cm}$.
$\therefore \quad$ Volume of wire $=\pi r^{2} l=\pi\left(\frac{2}{10}\right)^{2} \times l$
\therefore Volume of sphere $=$ Volume of wire

$$
\begin{aligned}
\Rightarrow & \frac{4}{3} \times 27 & =\frac{4}{100} l \\
\Rightarrow & l & =900 \mathrm{~cm} .
\end{aligned}
$$

2. Hint: $\mathrm{V}=\frac{h}{3}\left[\mathrm{~A}_{1}+\mathrm{A}_{2}+\sqrt{\mathrm{A}_{1} \mathrm{~A}_{2}}\right]$

$$
\begin{aligned}
& =5(20+8) \\
& =140 \mathrm{~cm}^{3} .
\end{aligned}
$$

3. Let the base radii be $3 x$ and $5 x$ respectively and let the same height be h.

$$
\begin{aligned}
& \mathrm{V}_{1}=\frac{1}{3} \pi(3 x)^{2} \times h ; \mathrm{V}_{2}=\frac{1}{3} \pi(5 x)^{2} \times h \\
& \therefore \frac{\mathrm{~V}_{1}}{\mathrm{~V}_{2}}=\frac{9 x^{2}}{25 x^{2}}, \text { i.e., } \mathrm{V}_{1}: \mathrm{V}_{2}=9: 25 .
\end{aligned}
$$

4. $53.625 \mathrm{~cm}^{2}$

Hint:

$\mathrm{H}=$ height of cone
$=7.75-1.75$
$=6 \mathrm{~cm}$
$l=$ slant height of cone
$=\sqrt{r^{2}+\mathrm{H}^{2}}$
\therefore T.S.A.

= C.S.A. of cone

+ C.S.A. of hemisphere

$$
\begin{aligned}
& =\pi r l+2 \pi r^{2} \\
& =\pi r[l+2 r] .
\end{aligned}
$$

5. T.S.A. $=$ C.S.A. $+2 \times$ (C.S.A. of hemisphere)

$$
\begin{aligned}
& =2 \pi r h+2\left(2 \pi r^{2}\right)=2 \pi r h+4 \pi r^{2} \\
& =2 \pi r[h+2 r]=2 \times \frac{22}{7} \times 3.5[10+7] \\
& =2 \times 22 \times 0.5 \times 17 \\
& =374 \mathrm{~cm}^{2} .
\end{aligned}
$$

6.

Let $\quad r=$ radius of cone $=30 \mathrm{~cm}$
$h=$ height of cone $=60 \mathrm{~cm}$
$\mathrm{R}=$ radius of cylinder $=60 \mathrm{~cm}$
$\mathrm{H}=$ height of cylinder $=180 \mathrm{~cm}$
\therefore Volume of water left $=$ Volume of cylinder - Volume of cone

$$
\begin{aligned}
& =\pi \mathrm{R}^{2} \mathrm{H}-\frac{1}{3} \pi r^{2} h \\
& =\pi\left[60 \times 60 \times 180-\frac{1}{3} \times 30 \times 30 \times 60\right] \\
& =\frac{22}{7} \times 60 \times\left[60 \times 180-\frac{1}{3} \times 30 \times 30\right] \\
& =630000 \times \frac{22}{7} \\
& =1980000 \mathrm{~cm}^{3}=1.98 \mathrm{~m}^{3} .
\end{aligned}
$$

7. Volume of hemisphere $=\frac{2}{3} \pi r^{3}$

$$
\begin{aligned}
&=\frac{2}{3} \times \frac{22}{7} \times \frac{3}{2} \times \frac{3}{2} \times \frac{3}{2} \\
&=\left(\frac{22}{7} \times \frac{3}{2} \times \frac{3}{2}\right) \mathrm{m}^{3} \\
& \therefore \text { Volume to be emptied } \\
&=\frac{1}{2} \times\left(\frac{22}{7} \times \frac{3}{2} \times \frac{3}{2}\right) \\
&=\left(\frac{11 \times 3 \times 3}{7 \times 2 \times 2}\right) \mathrm{m}^{3}
\end{aligned}
$$

As $1 \mathrm{~m}^{3}=1000 l=\frac{11 \times 3 \times 3}{7 \times 2 \times 2} \times 1000 l$
\therefore According to question, $\frac{25}{7} l$ gets emptied in 1 sec .
$\Rightarrow \quad 1 l$ gets emptied in $\frac{7}{25} \mathrm{sec}$.
$\therefore \frac{11 \times 3 \times 3}{7 \times 2 \times 2} \times 1000 l$ gets emptied in

$$
\begin{aligned}
& =\frac{7}{25} \times \frac{11 \times 3 \times 3}{7 \times 2 \times 2} \\
& =\frac{99}{100} \times 1000=990 \mathrm{sec} . \\
& =\frac{990}{60}=\frac{33}{2}=16 \frac{1}{2} \\
& =16 \mathrm{~min} .30 \mathrm{sec} .
\end{aligned}
$$

OR
$r=2 \mathrm{~cm}$
$\mathrm{R}=4 \mathrm{~cm}$
$h=14 \mathrm{~cm}$
\therefore Capacity of glass

$$
\begin{aligned}
& =\frac{1}{3} \pi h\left[r^{2}+\mathrm{R}^{2}+r \mathrm{R}\right] \\
& =\frac{1}{3} \times \frac{22}{7} \times 14[4+16+8] \\
& =\frac{44}{3} \times 28=\frac{1232}{3}=410.66 \mathrm{~cm}^{3} .
\end{aligned}
$$

8. $r=\frac{30}{2}=15 \mathrm{~m}$
$h_{1}=$ height of cylindrical part $=5.5 \mathrm{~m}$ $h_{2}=$ height of conical part $=8.25-5.5$

$$
=2.75 \mathrm{~m} .
$$

Area of canvas used $=$

C.S.A of cone + C.S.A of cylinder

$$
\begin{align*}
& =\pi r l+2 \pi r h_{1} \\
\mathrm{~A} & =\pi r\left(l+h_{1}\right) \tag{i}
\end{align*}
$$

Now

$$
\begin{aligned}
l & =\sqrt{h_{2}^{2}+r^{2}}=\sqrt{(2.75)^{2}+(15)^{2}} \\
& =\sqrt{7.5625+225}=\sqrt{232.5625} \\
& =15.25 \mathrm{~m}
\end{aligned}
$$

\therefore From $(i), A=\frac{22}{7} \times 15(15.25+5.5)$

$$
=\frac{22}{7} \times 15 \times 20.75=978.214 \mathrm{~m}^{2}
$$

\therefore Length of canvas $=\frac{\text { Area of canvas }}{\text { breadth }}$

$$
=\frac{978.214}{1.5}=652.14 \mathrm{~m} .
$$

WORKSHEET-123

1.

$$
\begin{aligned}
\mathrm{V}_{1} & =\pi r^{2} h \\
\mathrm{~V}_{2} & =\pi\left(\frac{r}{2}\right)^{2} h \\
\therefore \quad \mathrm{~V}_{1}: \mathrm{V}_{2} & =1: \frac{1}{4}=4: 1
\end{aligned}
$$

2. Let radius of the cone $=r$

$$
\begin{array}{rlrl}
& \quad \frac{1}{3} \pi r^{2} x & =\frac{4}{3} \pi x^{3} \\
\Rightarrow \quad r & r & =2 x \mathrm{~cm} .
\end{array}
$$

3. Let the required number of cubes be n.

Volume of n cubes $=$ Volume of the ball

$$
\begin{aligned}
\Rightarrow n \times 1^{3} & =\frac{4}{3} \times \frac{22}{7} \times \frac{21}{2} \times \frac{21}{2} \times \frac{21}{2} \\
\Rightarrow \quad n & =4851 .
\end{aligned}
$$

4. T.S.A. of remaining solid 0.7 cm = C.S.A. of cylinder

+ Area of circular base + C.S.A. of cone.
$=2 \pi r h+\pi r^{2}+\pi r l$
$=\pi r[2 h+r+l] ;$

$$
=\frac{22}{7} \times 0.7[4.8+0.7+2.5]
$$

$$
\left[\therefore l=\sqrt{(2.4)^{2}+(0.7)^{2}}=2.5 \mathrm{~cm}\right]
$$

$$
=17 \cdot 6 \approx 18 \mathrm{~cm}^{2} .
$$

5.

$\mathrm{R}=9 \mathrm{~cm}$
$r=6 \mathrm{~cm}$
Let $h=$ height of water in cylindrical vessel
\therefore Volume of water in hemisphere $=$ Volume of water in cylinder upto height h
6. Area of canvas required $=$ C.S.A of conical part + C.S.A of cylindrical part

$$
\begin{aligned}
& =\pi r l+2 \pi \mathrm{RH} \\
& =\pi\left[\frac{3}{2} \times 2.8+3 \times 2.1\right] \\
& {\left[\begin{array}{rr}
\because r & =\text { radius of cone } \\
\mathrm{R} & =\text { radius of cylinder } \\
l & =\text { slant height of cone } \\
\mathrm{H} & =\text { hight of cylinder }
\end{array}\right]} \\
& =\frac{22}{7}[3 \times 1.4+6.3]=\frac{22}{7}[4.2+6.3]
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \quad \frac{2}{3} \pi \mathrm{R}^{3}=\pi r^{2} h \\
& \Rightarrow \quad \frac{2}{3}(9)^{3}=(6)^{2} \cdot h \\
& \Rightarrow \quad h=\frac{\frac{2}{3} \times 9 \times 9 \times 9}{6 \times 6} \\
& =\frac{27}{2}=13.5 \mathrm{~cm}
\end{aligned}
$$

$=\frac{22}{7} \times 10.5=22 \times 1.5=33.0=33 \mathrm{~m}^{2}$
Now, as $1 \mathrm{~m}^{2}$ costs ` 500 \(\therefore\) Cost of \(33 \mathrm{~m}^{2}=33 \times 500={ }^{`} 16500\).
7.157 .5 cm .

Hint: Volume of water flows out of pipe in 1 hour $\left(V_{1}\right)=\pi(1)^{2} \times 70 \times 3600 \mathrm{~cm}^{3}$
Let level of water rise in tank $=h$

$$
\begin{array}{rlrl}
& & \text { Volume of tank }\left(\mathrm{V}_{2}\right) & =\pi(40)^{2} \times h \\
\therefore \quad & \mathrm{~V}_{1} & =\mathrm{V}_{2} \\
\Rightarrow \quad & h & =\frac{70 \times 3600}{40 \times 40} \\
& & =157.5 \mathrm{~cm} .
\end{array}
$$

8. $r=\frac{4.2}{2}=2.1 \mathrm{~cm}$ and $h=2.8 \mathrm{~cm}$

$\therefore \quad l=\sqrt{r^{2}+h^{2}}=\sqrt{(2.1)^{2}+(2.8)^{2}}$

$$
\begin{aligned}
& =\sqrt{4.41+7.84}=\sqrt{12.25} \\
& =3.5 \mathrm{~cm}
\end{aligned}
$$

\therefore T.S.A. of remaining solid

$$
\begin{aligned}
& =\text { C.S.A. of cylinder }+ \text { Area of } \\
& \quad \text { circular base }+ \text { C.S.A. of cone } \\
& =2 \pi r h+\pi r^{2}+\pi r l \\
& =\pi r(2 h+r+l) \\
& =\frac{22}{7} \times 2.1(2 \times 2.8+2.1+3.5) \\
& =\frac{22}{7} \times \frac{21}{10} \times(5.6+2.1+3.5) \\
& =\frac{66}{10} \times 11.2=73.92 \mathrm{~cm}^{2}
\end{aligned}
$$

WORKSHEET - 124

1. $\triangle \mathrm{ABC} \sim \triangle \mathrm{ADE}$
$\frac{r_{2}}{r_{1}}=\frac{2 h}{h} \Rightarrow r_{2}=2 r_{1}$
Volume of upper part
$\mathrm{V}_{1}=\frac{1}{3} \pi r_{1}{ }^{2} h$
Volume of lower part

$\mathrm{V}_{2}=\frac{1}{3} \pi h\left(r_{1}{ }^{2}+4 r_{1}{ }^{2}+2 r_{1}{ }^{2}\right)=\frac{7}{3} \pi r_{1}{ }^{2} h$
$\therefore \quad \mathrm{V}_{1}: \mathrm{V}_{2}=1: 7$.
2. Let required height $=\mathrm{H}$.

$$
\begin{aligned}
& \pi r^{2} \mathrm{H}+\frac{1}{3} \pi r^{2} h=3 \times \frac{1}{3} \pi r^{2} h \\
& \Rightarrow \mathrm{H}+\frac{1}{3} h=h \Rightarrow \mathrm{H}=\frac{2 h}{3} .
\end{aligned}
$$

3. Volume of whole solid
$=$ Volume of cone + Volume of cylinder + Volume of hemisphere.

$$
\begin{aligned}
& =\frac{1}{3} \pi r^{2} \mathrm{H}+\pi r^{2} h+\frac{2}{3} \pi r^{3} \\
& =\frac{1}{3} \pi r^{2}[\mathrm{H}+3 h+2 r] \\
& =\frac{1}{3} \times \frac{22}{7} \times \frac{7}{2} \times \frac{7}{2} \times(2.8+19.5+7) \\
& =\frac{22 \times 7}{3 \times 4} \times 29.3=376.016 \mathrm{~cm}^{3} .
\end{aligned}
$$

4. Volume of hemisphere $=\frac{2}{3} \pi r^{3}$

$$
\begin{aligned}
\Rightarrow & \frac{2}{3} \pi r^{3}=2425 \frac{1}{2} \\
\Rightarrow & \frac{2}{3} \times \frac{22}{7} \times r^{3}=\frac{4851}{2} \\
\Rightarrow & r^{3}=\frac{4851 \times 7 \times 3}{2 \times 22 \times 2} \\
\Rightarrow & r^{3}=\frac{441 \times 7 \times 3}{2 \times 2 \times 2}=\frac{7 \times 7 \times 3 \times 3 \times 3}{2 \times 2 \times 2} \\
\Rightarrow & r=\sqrt[3]{\frac{7 \times 7 \times 7 \times 3 \times 3 \times 3}{2 \times 2 \times 2}}=\frac{7 \times 3}{2} \\
& =\frac{21}{2} \mathrm{~cm} .
\end{aligned}
$$

\therefore C.S.A of hemisphere $=2 \pi r^{2}$

$$
=2 \times \frac{22}{7} \times \frac{21}{2} \times \frac{21}{2}=1386 \mathrm{~cm}^{2}
$$

5. $h=10 \mathrm{~cm}$
$r=3.5 \mathrm{~cm}$
\therefore Volume of wood in toy
$=$ Volume of cylinder
$-2 \times$ (Volume of hemisphere)
$=\pi r^{2} h-2 \times\left(\frac{2}{3} \pi r^{3}\right)$
$=\pi r^{2} h-\frac{4}{3} \pi r^{3}=\pi r^{2}\left[h-\frac{4}{3} r\right]$

$=\frac{22}{7} \times 3.5 \times 3.5 \times\left[10-\frac{4}{3} \times 3.5\right]$
$=22 \times 0.5 \times 3.5 \times\left[\frac{30-14}{3}\right]$
$=11 \times 3.5 \times \frac{16}{3}=205.33 \mathrm{~cm}^{3}$.
6. Total surface area of solid cuboidal block

$$
\begin{aligned}
\left(\mathrm{S}_{1}\right) & =2(l b+b h+h l) \\
& =2(15 \times 10+10 \times 5+15 \times 5) \\
& =550 \mathrm{~cm}^{2}
\end{aligned}
$$

Area of two circular base $=2 \pi r^{2}$

$$
\left(\mathrm{S}_{2}\right)=2 \times \frac{22}{7} \times\left(\frac{7}{2}\right) \times\left(\frac{7}{2}\right)=77 \mathrm{~cm}^{2}
$$

Curved surface area of cylinder $=2 \pi r h$

$$
\begin{aligned}
\left(S_{3}\right) & =2 \times \frac{22}{7} \times \frac{7}{2} \times 5 \\
& =110 \mathrm{~cm}^{2}
\end{aligned}
$$

\therefore Required area $=\left(\mathrm{S}_{1}+\mathrm{S}_{3}-\mathrm{S}_{2}\right)$

$$
=550+110-77=583 \mathrm{~cm}^{2} .
$$

7. Volume of cylindrical tank $=\pi(5)^{2} \times 2$

$$
=50 \pi \mathrm{~cm}^{3}
$$

\therefore Volume of water that flows through pipe in x hours
$=$ Volume of cylinder of radius 10 cm and length $(=4 x \mathrm{~km})=4000 x \mathrm{~m}$.

$$
=\pi \times\left(\frac{1}{10} \mathrm{~m}\right)^{2} \times 4000 x \mathrm{~m}=40 \pi x \mathrm{~m}^{3}
$$

$\therefore 40 \pi x=50 \pi$

$$
\Rightarrow \quad x=\frac{5}{4} \mathrm{hrs} .=1 \mathrm{hr} 15 \mathrm{~min} .
$$

8. $r=$ radius of pipe $=1 \mathrm{~cm}$
$\mathrm{R}=$ radius of tank $=40 \mathrm{~cm}$

Rate of flow $=0.4 \mathrm{~m} / \mathrm{s}$. $=40 \mathrm{~cm} / \mathrm{s}$.

$$
=40 \times 60 \times 60 \mathrm{~cm} / \mathrm{hr}
$$

Volume of water flow out through the pipe in $\frac{1}{2} \mathrm{hr}$

$$
\begin{aligned}
V_{1} & =\pi r^{2} \times\left(\frac{40 \times 60 \times 60}{2}\right) \\
& =\pi \times 1 \times 1 \times 20 \times 60 \times 60
\end{aligned}
$$

Let required height be h.
Volume of water flown in cylinder

$$
\mathrm{V}_{2}=\pi \mathrm{R}^{2} h=\pi(40)^{2} h
$$

According to question,

$$
\begin{array}{ll}
& \mathrm{V}_{2}=\mathrm{V}_{1} \\
\Rightarrow & \pi \times 20 \times 60 \times 60=\pi \times 40 \times 40 \times h \\
\Rightarrow & h=\frac{20 \times 60 \times 60}{40 \times 40}=\frac{90}{2}=45 \mathrm{~cm} .
\end{array}
$$

WORKSHEET- 125

1. Surface area of cone
= Surface area of hemisphere

$$
\begin{array}{lrlrl}
& \Rightarrow & \pi r \sqrt{r^{2}+h^{2}} & =2 \pi r^{2} \\
& \Rightarrow & r^{2}+h^{2} & =4 r^{2} \\
& \Rightarrow & 3 r^{2} & =h^{2} \\
& \Rightarrow & \frac{r^{2}}{h^{2}} & =\frac{1}{3} \\
& \Rightarrow & r: h & =1: \sqrt{3} .
\end{array}
$$

2. $\mathrm{N} \times \frac{4}{3} \pi \times\left(\frac{4.2}{2}\right)^{3}=66 \times 42 \times 21$

$$
\Rightarrow \mathrm{N}=\frac{66 \times 42 \times 21 \times 3 \times 7}{4 \times 22 \times 2.1 \times 2.1 \times 2.1}=1500
$$

3. Let $\mathrm{H}=120 \mathrm{~cm}=$ height of cone

$$
\begin{aligned}
h=180 \mathrm{~cm}= & \text { height of cylinder } \\
r=60 \mathrm{~cm} & =\text { radius of cone, cylinder } \\
& \text { and hemisphere }
\end{aligned}
$$

\therefore Volume of water left in cylinder
$=$ Volume of cylinder - Volume of cone - Volume of hemisphere

$$
\begin{aligned}
& =\pi r^{2} h-\frac{1}{3} \pi r^{2} \mathrm{H}-\frac{2}{3} \pi r^{3} \\
& =\pi r^{2}\left[h-\frac{\mathrm{H}}{3}-\frac{2}{3} r\right] \\
& =\frac{22}{7} \times 60 \times 60[180-40-40] \\
& =\frac{22}{7} \times 60 \times 60 \times 100 \mathrm{~cm}^{3}=1.131 \mathrm{~m}^{3} .
\end{aligned}
$$

4. False, because $\frac{4}{3} \pi \mathrm{R}^{3}=8 \times \frac{4}{3} \pi r^{3} \Rightarrow r=\frac{\mathrm{R}}{2}$.
5. Let $\quad r=$ radius of cylinder $=3 \mathrm{~cm}$

$$
h=\text { height of cylinder }=5 \mathrm{~cm}
$$

$\mathrm{R}=$ radius of cone $=\frac{3}{2} \mathrm{~cm}$
$\mathrm{H}=$ height of cone $=\frac{8}{9} \mathrm{~cm}$
\therefore Volume of cone $=\frac{1}{3} \pi \mathrm{R}^{2} \mathrm{H}$

$$
=\frac{1}{3} \pi\left(\frac{3}{2}\right)^{2} \times \frac{8}{9}=\frac{2}{3} \pi \mathrm{~cm}^{3}
$$

Now, volume of metal left in cylinder = Volume of cylinder - Volume of cone

$$
\begin{aligned}
& =\pi r^{2} h-\frac{2}{3} \pi=\pi(3)^{2} \times 5-\frac{2}{3} \pi \\
& =45 \pi-\frac{2}{3} \pi=\frac{133 \pi}{3} \mathrm{~cm}^{3} \\
\therefore & \frac{\text { Volume of metal left in cylinder }}{\text { Volume of metal taken out }} \\
& =\frac{\frac{133 \pi}{3}}{\frac{2}{3} \pi}=\frac{133 \pi}{3} \times \frac{3}{2 \pi}=133: 2 .
\end{aligned}
$$

$r=$ radius of cone $=\frac{40}{2}=20 \mathrm{~cm}$
$h=$ height of cone $=24 \mathrm{~cm}$
\therefore Volume of cone $\left(\mathrm{V}_{1}\right)=\frac{1}{3} \pi r^{2} h \mathrm{~cm}^{3}$
Also, volume of water flows out of pipe in 1 min

$$
\begin{aligned}
\mathrm{V}_{2} & =\pi \mathrm{R}^{2} \mathrm{H} \\
& =\pi\left(\frac{5}{20}\right)^{2} \times 1000 \mathrm{~cm}^{3}
\end{aligned}
$$

Let conical vessel fills in ' t ' min.

$$
\begin{aligned}
& \therefore \quad \mathrm{V}_{1}=t \times \mathrm{V}_{2} \\
& \Rightarrow \quad t=\frac{\mathrm{V}_{1}}{\mathrm{~V}_{2}}=\frac{\frac{1}{3} \pi(20)^{2} \times 24}{\pi\left(\frac{5}{20}\right)^{2} \times 1000} \\
& \frac{400 \times 8 \times 400}{25 \times 1000}=51.2 \mathrm{~min} . \\
& \\
& =51 \mathrm{~min} 12 \mathrm{sec} .
\end{aligned}
$$

7. $r_{1}=$ radius of small cylinder $=8 \mathrm{~cm}$
$h_{1}=$ height of small cylinder $=60 \mathrm{~cm}$
$r_{2}=$ radius of big cylinder $=12 \mathrm{~cm}$
$h_{2}=$ height of big cylinder $=220 \mathrm{~cm}$
Volume of pole
= Volume of small cylinder

+ Volume of big cylinder.
$=\pi r_{1}{ }^{2} h_{1}+\pi r_{2}{ }^{2} h_{2}$
$=3.14 \times[64 \times 60+144$
$\times 220$]
$=3.14 \times[3840+31680]$
$=111532.8 \mathrm{~cm}^{3}$
\therefore Mass $=111532.8 \times 8 \mathrm{~g}$ $=892.26 \mathrm{~kg}$.

8. $r=2.8 \mathrm{~m}$

$h_{1}=3.5 \mathrm{~m}=$ height of cylinder
$h_{2}=2.1 \mathrm{~m}=$ height of cone
$l=$ slant height

$$
=\sqrt{h_{2}^{2}+r^{2}}=\sqrt{\left(2.1^{2}\right)+(2.8)^{2}}
$$

$$
=\sqrt{4.41+7.84}=\sqrt{12.25}=3.5 \mathrm{~m}
$$

\therefore Area of canvas used for 1 tent $=$ CSA of cone + CSA of cylinder

$$
\begin{aligned}
& =\pi r l+2 \pi r h_{1}=\pi r\left(l+2 h_{1}\right) \\
& =\frac{22}{7} \times 2.8(3.5+7)=\frac{22 \times 4}{10} \times \frac{105}{10} \\
& =\frac{88 \times 105}{100}=92.40 \mathrm{~m}^{2}
\end{aligned}
$$

\therefore Area required for 1500 tents

$$
=1500 \times 92.40=138600 \mathrm{~m}^{2}
$$

$$
\text { Cost }=138600 \times 120=` 16632000
$$

\therefore Amount shared by each school

$$
=` \frac{16632000}{50}=` 332640
$$

WORKSHEET - 26

1. Number of solid spheres

$$
\begin{aligned}
& =\frac{\text { Volume of cylinder }}{\text { Volume of 1 sphere }} \\
& =\frac{\pi r^{2} h}{\frac{4}{3} \pi \mathrm{R}^{3}}+\frac{3 \times(2)^{2} \times 45}{4 \times(3)^{3}}=\frac{45}{3 \times 3}=5
\end{aligned}
$$

2. C.S.A. $=$ Inner C.S.A. + Outer C.S.A.

$$
=2 \pi r_{1}^{2}+2 \pi r_{2}^{2}=2 \pi\left(r_{1}^{2}+r_{2}^{2}\right) .
$$

3. Number of bags $=\frac{\text { Volume of circular drum }}{\text { Volume of each bag }}$

$$
=\frac{3.14 \times(4.2)^{2} \times 3.5}{2.1} \approx 92 .
$$

4. $\mathrm{L}=15 \mathrm{~cm}, \mathrm{~B}=10 \mathrm{~cm}$ and $\mathrm{H}=5 \mathrm{~cm}$

Volume of block $=\mathrm{L} \times \mathrm{B} \times \mathrm{H}=15 \times 10 \times 5$

$$
=750 \mathrm{~cm}^{3} .
$$

The hole is only possible throughout the surface having area $15 \mathrm{~cm} \times 10 \mathrm{~cm}$.
Volume of circular hole

$$
\begin{aligned}
& =\pi r^{2} h=\frac{22}{7} \times\left(\frac{7}{2}\right)^{2} \times 5 \\
& =\frac{22 \times 7}{4} \times 5 \\
& =\frac{154 \times 5}{4}=192.5 \mathrm{~cm}^{3}
\end{aligned}
$$

\therefore Volume of remaining solid

$$
\begin{aligned}
& =750-192.5 \\
& =557.5 \mathrm{~cm}^{3}
\end{aligned}
$$

5. Volume of ice cream $=\frac{5}{6}$ [volume of cone + volume of hemisphere]

$$
\begin{aligned}
& =\frac{5}{6}\left[\frac{1}{3} \pi r^{2} h+\frac{2}{3} \pi r^{3}\right] \\
& =\frac{5}{6} \times \frac{1}{3} \times \pi r^{2}[h+2 r]
\end{aligned}
$$

Put $r=5 \mathrm{~cm}, h=5 \mathrm{~cm}, \pi=\frac{22}{7}$

$$
\begin{aligned}
& \text { Volume }=\frac{5}{6} \times \frac{1}{3} \times \frac{22}{7} \times 5 \times 5[5+10] \\
& =\frac{22 \times 125}{126} \times 15=\frac{11 \times 125 \times 5}{21} \\
& \cong 327.38 \mathrm{~cm}^{3} .
\end{aligned}
$$

6. Let $r=$ radius of sphere $=\frac{12}{2}=6 \mathrm{~cm}$
$\therefore \quad$ Volume of sphere $=\frac{4}{3} \pi r^{3}=\frac{4}{3} \pi(6)^{3}$

$$
=\frac{4}{3} \pi \times 6 \times 6 \times 6=288 \pi \mathrm{~cm}^{2}
$$

Also
Let radius of cylinder $=\mathrm{R}$
Let height up to which water level rises in
cylinder $=h=3 \frac{5}{9}=\frac{32}{9} \mathrm{~cm}$
\therefore Volume $=\pi \mathrm{R}^{2} h$
According to question

$$
\pi r^{2} h=288 \pi
$$

$$
\begin{array}{ll}
\Rightarrow & \pi \mathrm{R}^{2} \times \frac{32}{9}=288 \pi \\
\Rightarrow & \mathrm{R}^{2}=\frac{288 \times 9}{32}=\frac{72 \times 9}{8}=81 \\
\therefore & \mathrm{R}=\sqrt{81}=9 \mathrm{~cm}
\end{array}
$$

$\therefore \quad$ Required diameter $=18 \mathrm{~cm}$.
7. $h=24 \mathrm{~cm}$

$$
\begin{aligned}
r_{1}=\text { radius of upper circular end } & =\frac{30}{2} \\
& =15 \mathrm{~cm}
\end{aligned}
$$

$r_{2}=$ radius of lower circular end $=\frac{10}{2}$

$$
=5 \mathrm{~cm}
$$

$\therefore \quad l=\sqrt{h^{2}+\left(r_{1}-r_{2}\right)^{2}}=\sqrt{24^{2}+10^{2}}$

$$
=\sqrt{576+100}=\sqrt{676}=26 \mathrm{~cm}
$$

\therefore T.S.A. of container $=\pi l\left(r_{1}+r_{2}\right)+\pi r_{2}^{2}$

$$
\begin{aligned}
& =\pi\left[l\left(r_{1}+r_{2}\right)+r_{2}^{2}\right] \\
& =3.14[26 \times 20+25] \\
& =3.14 \times 545=1711.3 \mathrm{~cm}^{2}
\end{aligned}
$$

\therefore Cost of metal sheet used $=1711.3 \times \frac{10}{100}$

$$
=` 171.13 .
$$

8. Diameter $=5 \mathrm{~cm}$, Radius $=2.5 \mathrm{~cm}$,

Height $=10 \mathrm{~cm}$
Volume of glass of type $\mathrm{A}=\pi r^{2} h$

$$
=3.14 \times 2.5 \times 2.5 \times 10=196.25 \mathrm{~cm}^{3}
$$

Volume of hemisphere $=\frac{2}{3} \pi r^{3}$

$$
\begin{aligned}
& =\frac{2}{3} \times 3.14 \times 2.5 \times 2.5 \times 2.5 \\
& =32.71 \mathrm{~cm}^{3}
\end{aligned}
$$

\therefore Volume of glass of type $B=163.54 \mathrm{~cm}^{3}$
Volume of cone $=\frac{1}{3} \pi r^{2} h$

$$
\begin{aligned}
& =\frac{1}{3} \times 3.14 \times 2.5 \times 2.5 \times 1.5 \\
& =3.14 \times 2.5 \times 2.5 \times 0.5 \\
& =9.81 \mathrm{~cm}^{3}
\end{aligned}
$$

Volume of glass of type $C=196.25-9.81$ $=186.44 \mathrm{~cm}^{3}$
(i) The volume of glass of type A $=196.25 \mathrm{~cm}^{3}$.
(ii) The glass of type B has the minimum capacity of $163.54 \mathrm{~cm}^{3}$.
(iii) Volumeofsolidfigures(Mensuration)
(iv) Honesty.

WORKSHEET-127

1. $n \times \frac{4}{3} \pi \times\left(\frac{6}{2}\right)^{3}=\frac{1}{3} \pi \times(12)^{2} \times 24$

$$
\begin{aligned}
\Rightarrow \quad n & =\frac{12 \times 12 \times 8 \times 3}{4 \times 3 \times 3 \times 3} \\
n & =32 .
\end{aligned}
$$

2. C.S.A. $=$ Inner C.S.A. + Outer C.S.A.

$$
=2 \pi r_{1}^{2}+2 \pi r_{2}^{2}=2 \pi\left(r_{1}^{2}+r_{2}^{2}\right) .
$$

3. $\pi r^{2} h=448 \pi \Rightarrow r^{2} \times 7=448$
$\Rightarrow r=\sqrt{64} \quad \Rightarrow r=8 \mathrm{~cm}$
Curved surface area $=2 \pi r h=2 \times \frac{22}{7} \times 8 \times 7$ $=352 \mathrm{~cm}^{2}$.
4. False, sides become a, a and $2 a$ and so surface area will become

$$
\begin{aligned}
2(a \times a+a \times 2 a+2 a \times a) & =2\left(a^{2}+2 a^{2}+2 a^{2}\right) \\
& =10 a^{2}
\end{aligned}
$$

5. T.S.A of remaining solid $=$ T.S.A of frustum of cone so obtained

Let $\quad \mathrm{R}=6 \mathrm{~cm}$

$$
r=?
$$

As $\triangle \mathrm{ABE} \sim \triangle \mathrm{ACD}$
$\Rightarrow \quad \frac{\mathrm{AB}}{\mathrm{AC}}=\frac{\mathrm{BE}}{\mathrm{CD}}$
$\Rightarrow \quad \frac{4}{12}=\frac{r}{\mathrm{R}} \Rightarrow \frac{1}{3}=\frac{r}{6} \Rightarrow r=2 \mathrm{~cm}$
Also $l=\sqrt{h^{2}+(R-r)^{2}}=\sqrt{8^{2}+2^{2}}=4 \sqrt{5} \mathrm{~cm}$
\therefore From $(i) \Rightarrow \mathrm{TSA}=\pi\left[(2)^{2}+(6)^{2}+4 \sqrt{5}(6+2)\right]$
$=\frac{22}{7}[32 \times 2.236+40]=\frac{22}{7} \times($
(111.552)
$=350.592 \mathrm{~m}^{2}$
6. $h=7 \mathrm{~cm} ; r=\frac{5}{2} \mathrm{~mm}=0.25 \mathrm{~cm}$

Volume of the barrel $=\pi r^{2} h$
$=\frac{22}{7} \times 0.25 \times 0.25 \times 7=1.375 \mathrm{~cm}^{3}$
Volume of ink in the bottle

$$
=\frac{1}{5} \text { litre }=\frac{1}{5} \times 1000 \mathrm{~cm}^{3}=200 \mathrm{~cm}^{3}
$$

Number of barrels filled by the ink of bottle

$$
=\frac{200}{1.375}=\frac{200000}{1375}=\frac{1600}{11}
$$

\therefore Number of words written by 1 barrel $=330$
\therefore Number of words written by $\frac{1600}{11}$
barrels

$$
=330 \times \frac{1600}{11}=48000 .
$$

7. Let $r=$ radius of smaller sphere $=3 \mathrm{~cm}$ and $\mathrm{R}=$ radius of new sphere formed
$\therefore \quad \mathrm{V}_{1}=$ Volume of smaller sphere

$$
=\frac{4}{3} \pi r^{3}=\frac{4}{3} \pi(3)^{3}=36 \pi \mathrm{~cm}^{3}
$$

$\mathrm{V}_{2}=$ Volume of bigger sphere
as density of metal $=\frac{\text { mass }}{\text { volume }}=\frac{1}{36 \pi}$
\Rightarrow Volume of bigger sphere \times density $=$ Mass

$$
\begin{aligned}
& =\frac{\text { Mass }}{\text { density }}=\frac{7}{\left(\frac{1}{36} \pi\right)} \\
\therefore \quad \mathrm{V}_{2} & =252 \pi \mathrm{~cm}^{3}
\end{aligned}
$$

Now, let $\mathrm{V}=$ Volume of new sphere

$$
\begin{array}{rlrl}
& \therefore & \mathrm{V} & =\mathrm{V}_{1}+\mathrm{V}_{2}=36 \pi+252 \pi \\
& \frac{4}{3} \pi \mathrm{R}^{3} & =288 \pi \\
& \Rightarrow & \mathrm{R}^{3} & =\frac{288 \times 3}{4}=72 \times 3=216 \\
& \Rightarrow & \mathrm{R} & =6 \mathrm{~cm}
\end{array}
$$

$\therefore \quad$ Diameter $=12 \mathrm{~cm}$.
8. (i) $\mathrm{A}_{1}=40 \mathrm{~cm}^{2}, \mathrm{~A}_{2}=160 \mathrm{~cm}^{2}, h=45 \mathrm{~cm}$
\therefore Volume of bucket

$$
\begin{aligned}
& =\frac{h}{3}\left[\mathrm{~A}_{1}+\mathrm{A}_{2}+\sqrt{\mathrm{A}_{1} \mathrm{~A}_{2}}\right] \\
& =\frac{45}{3}[40+160+\sqrt{6400}] \\
& =15[200+80] \\
& =15 \times 280=4200 \mathrm{~cm}^{3}
\end{aligned}
$$

(ii) Volume of each glass $=\pi r^{2} h$

$$
\begin{aligned}
& =\frac{22}{7} \times 2 \times 2 \times 7\left(\because r=\frac{\text { diameter }}{2}\right) \\
& =88 \mathrm{~cm}^{3}
\end{aligned}
$$

Number of glasses needed

$$
\begin{aligned}
& =\frac{\text { Volume of the bucket }}{\text { Volume of one glass }}=\frac{4200}{88} \\
& =47.72 \text { (approx.) } \\
& =48 \text { glasses. (rounded) }
\end{aligned}
$$

(iii) Kindheartedness and Cooperation.

CHAPTER TEST

1. $49 \times 33 \times 24=\frac{4}{3} \times \frac{22}{7} \times r^{3}$

$$
\Rightarrow r=\sqrt[3]{9261} \Rightarrow r=21 \mathrm{~cm} .
$$

2. $\frac{\mathrm{V}_{1}}{\mathrm{~V}_{2}}=\frac{64}{27} \Rightarrow \frac{\frac{4}{3} \pi r_{1}{ }^{3}}{\frac{4}{3} \pi r_{2}{ }^{3}}=\frac{4^{3}}{3^{3}} \Rightarrow \frac{r_{1}}{r_{2}}=\frac{4}{3}$

$$
\frac{\mathrm{S}_{1}}{\mathrm{~S}_{2}}=\frac{4 \pi r_{1}^{2}}{4 \pi r_{2}^{2}}=\left(\frac{r_{1}}{r_{2}}\right)^{2}=\left(\frac{4}{3}\right)^{2}=\frac{16}{9}
$$

$$
\therefore \quad \mathrm{S}_{1}: \mathrm{S}_{2}=16: 9 .
$$

3. $r_{1}=\frac{44}{2}=22 \mathrm{~cm}$,

$$
r_{2}=\frac{24}{2}=12 \mathrm{~cm}, h=35 \mathrm{~cm}
$$

$$
\begin{aligned}
\text { Capacity } & =\frac{\pi h}{3}\left(r_{1}^{2}+r_{2}^{2}+r_{1} r_{2}\right) \\
& =\frac{22}{7} \times \frac{35}{3} \times(484+144+264) \\
& =32706.67 \mathrm{~cm}^{3}=\frac{32706.67}{1000} l \\
& =32.7 l .
\end{aligned}
$$

4. True, because capacity

$$
=\pi r^{2} h-\frac{2}{3} \pi r^{3}=\frac{\pi r^{2}}{3}(3 h-2 r) .
$$

5. Radius of each cone $=r=\frac{6}{2}=3 \mathrm{~cm}$

Let the heights of the cone be h_{1} and h_{2} respectively.
$\therefore \quad h_{1}+h_{2}=21 \mathrm{~cm}$
Given: $\quad \frac{\mathrm{V}_{1}}{\mathrm{~V}_{2}}=\frac{2}{1}$

$$
\therefore \quad \frac{\frac{1}{3} \pi r^{2} h_{1}}{\frac{1}{3} \pi r^{2} h_{2}}=\frac{2}{1} \Rightarrow h_{1}=2 h_{2}
$$

Substitute $h_{1}=2 h_{2}$ in equation (i) to get $h_{2}=7 \mathrm{~cm} \quad \therefore h_{1}=14 \mathrm{~cm}$
Now, $\mathrm{V}_{1}=\frac{1}{3} \pi r^{2} h_{1}=\frac{1}{3} \times \frac{22}{7} \times 3^{2} \times 14=132 \mathrm{~cm}^{3}$ and $\mathrm{V}_{2}=\frac{1}{3} \pi r^{2} h_{2}=\frac{1}{3} \times \frac{22}{7} \times 3^{2} \times 7=66 \mathrm{~cm}^{3}$
Volume of remaining portion
$=$ Volume of the cylinder $-\left(\mathrm{V}_{1}+\mathrm{V}_{2}\right)$
$=\pi r^{2} \times 21-(132+66)$
$=\frac{22}{7} \times 3^{2} \times 21-(132+66)$
$=594-198=396 \mathrm{~cm}^{3}$.
6.

$r=3.5 \mathrm{~cm}$
$\mathrm{H}=$ height of toy $h=$ height of cone
Volume of toy $=166 \frac{5}{6} \mathrm{~cm}^{3}$
$\therefore \quad 166 \frac{5}{6}=$ Volume of cone

+ Volume of hemisphere
$=\frac{1}{3} \pi r^{2} h+\frac{2}{3} \pi r^{3}$
$=\frac{1}{3} \pi r^{2}[h+2 r]$
$=\frac{1}{3} \times \frac{22}{7} \times 3.5 \times 3.5[h+3.5 \times 2]$
$\Rightarrow \quad \frac{1001}{6}=\frac{22}{7} \times \frac{7}{2} \times \frac{7}{2}[7+h]$
$\Rightarrow \quad 7+h=\frac{1001 \times 7}{22 \times 7}=13$
$\Rightarrow \quad h=6 \mathrm{~cm}$
Also area hemispherical part of toy $=2 \pi r^{2}$

$$
=2 \times \frac{22}{7} \times 3.5 \times 3.5=77 \mathrm{~cm}^{2}
$$

\therefore Cost of painting $=77 \times 10={ }^{`} 770$.
7. Let internal radius of pipe $=x \mathrm{~m}$.
and radius of base of tank

$$
=40 \mathrm{~cm}=\frac{2}{5} \mathrm{~m}
$$

Level of water raised in tank

$$
=3.15 \text { or } \frac{315}{100}
$$

Volume of water delivered in $\frac{1}{2} \mathrm{hr}$

$$
\begin{gathered}
=\pi r^{2} h=\pi(x)^{2} \times 1260 \mathrm{~m} \\
{[\because 2.52 \mathrm{~km}=1 \mathrm{hr}]}
\end{gathered}
$$

$2520 \mathrm{~m}=1 \mathrm{hr}$
\therefore In $\frac{1}{2} \mathrm{hr}$ height $=\frac{1}{2} \times 2520=1260 \mathrm{~m}$
\therefore According to question,
$\Rightarrow \pi\left(x^{2}\right)(1260)=\pi \times \frac{2}{5} \times \frac{2}{5} \times \frac{315}{100}$

$$
\begin{array}{ll}
\Rightarrow & x^{2}=\frac{4}{25} \times \frac{315}{100} \times \frac{1}{1260}=\frac{1}{2500} \\
\Rightarrow & x=\frac{1}{50} \mathrm{~m}=2 \mathrm{~cm}
\end{array}
$$

\therefore Internal diameter of pipe $=4 \mathrm{~cm}$.
8. (i) $\mathrm{V}_{1}=$ Volume of juice in cubical container

$$
=(5 \times 6 \times 22) \mathrm{cm}^{3}
$$

$\mathrm{V}_{1}=$ Volume of juice in cubical container
$=\frac{22}{7} \times(7)^{2} \times 22 \mathrm{~cm}^{3}$
$V_{3}=$ Volume of juice in each small cone

$$
=\frac{1}{3} \times \frac{22}{7} \times(2)^{2} \times 3.5 \mathrm{~cm}^{3}
$$

\therefore Case I. If cubical packing is purchased, then number of small cones
needed $=\frac{V_{1}}{V_{3}}=\frac{5 \times 6 \times 22}{\frac{1}{3} \times \frac{22}{7} \times 2 \times 2 \times 3.5}$

$$
=\frac{6 \times 10 \times 3}{2 \times 2}=3 \times 5 \times 3=45
$$

Case II. If cylindrical packing is purchased
\therefore Number of small cones needed

$$
\begin{aligned}
& =\frac{V_{2}}{V_{3}}=\frac{\frac{22}{7} \times 7 \times 7 \times 22}{\frac{1}{3} \times \frac{22}{7} \times 2 \times 2 \times 3.5} \\
& =\frac{7 \times 7 \times 22 \times 3 \times 10}{2 \times 2 \times 35}=7 \times 11 \times 3=231 .
\end{aligned}
$$

(ii) Mr Sharma must purchase cylindrical packing to serve maximum children.
(iii) Surface area and volume of solids.
(iv) Kindheartedness and helpful.

WORKSHEET- 29

1. 21.1

Hint: 3 Median $=$ mode +2 mean.
2. 3 Median $=2$ mean + mode

$$
\begin{aligned}
\Rightarrow \text { Mean } & =\frac{3 \text { median }- \text { mode }}{2} \\
& =\frac{3 \times 45.5-50.5}{2}=\frac{136.5-50.5}{2} \\
& =\frac{86.0}{2}=43 .
\end{aligned}
$$

3. In such case, mean will increase by 3 .
\therefore New mean $=18+3=21$.
4. $x=26$

Hint: Mean $=\frac{\Sigma f_{i} x_{i}}{\Sigma f_{i}}$.
5. As

Cost of living index	No. of weeks f_{i}	Cumulative frequency c.f.
$1400-1550$	8	8
$1550-1700$	15	23
$1700-1850$	21	44
$1850-2000$	8	$\mathrm{~N}=52$
	$\mathrm{~N}=52$	

$\therefore \quad \frac{\mathrm{N}}{2}=\frac{52}{2}=26$
$\therefore \quad$ c.f. just greater than 26 is 44
$\therefore \quad$ Median class is $1700-1850$.
6. 36.25

Hint: Here maximum class frequency is 32 . So, the modal class is 30-40.

Now, $l=30, f_{1}=32, f_{0}=12, f_{2}=20, h=10$
Use the formula:

$$
\text { Mode }=l+\left(\frac{f_{1}-f_{0}}{2 f_{1}-f_{0}-f_{2}}\right) \times h .
$$

7. For less than ogive:

Age	No. of participants
Less than or equal to 15	37
Less than or equal to 30	82
Less than or equal to 45	109
Less than or equal to 60	118
Less than or equal to 75	125
Less than or equal to 90	128

So we'll plot following points on graph
$\mathrm{A}(15,37), \mathrm{B}(30,82), \mathrm{C}(45,109)$
D (60, 118), E(75, 125), F(90, 128)
More than ogive:

Age	No. of participants
More than or equal to 0	128
More than or equal to 15	91
More than or equal to 30	46
More than or equal to 45	19
More than or equal to 60	10
More than or equal to 75	3
More than or equal to 90	0

So we will plot following points on graph. $A^{\prime}(0,128), B^{\prime}(15,91), C^{\prime}(30,46), D^{\prime}(45,19)$, $\mathrm{E}^{\prime}(60,10), \mathrm{F}^{\prime}(75,3), \mathrm{G}^{\prime}(90,0)$.

From Graph: The two ogive are intersecting at P drop a line from P, perpendicular to x-axis it meets x-axis at 24

$$
\therefore \quad \text { Median }=24 .
$$

WORKSHEET - 130

1. Here, $a=25, h=10$.

$$
\begin{aligned}
\therefore \quad \bar{x} & =a+h\left(\frac{\Sigma f_{i} u_{i}}{\Sigma f_{i}}\right) \\
& =25+10\left(\frac{20}{100}\right)=27 .
\end{aligned}
$$

2. 4
3. The given distribution can be represented as:

Marks obtained	No. of students
$0-10$	5
$10-20$	3
$20-30$	4
$30-40$	3
$40-50$	6
More than 50	42

Clearly, the frequency of the class $30-40$ is 3 .
4. Let us rewrite the given table with cumulative frequencies.

Class interval	f	$c f$	
$0-5$	10	10	
	$5-10$	15	
$10-15$	12	25	
$15-20$	20	57	
$20-25$	9	66	
	$\mathrm{~N}=66$		
\therefore	$\mathrm{~N}=66$		
	$\frac{\mathrm{~N}}{2}=33$		

$\therefore \quad$ Median class $=10-15$
Modal class $=15-20$
Required sum $=10+15=25$.
5. In the given distribution, maximum class frequency is 20 , so the modal class is $40-50$. Here, lower limit of modal class: $l=40$
Frequency of the modal class: $f_{1}=20$
Frequency of the class preceding the modal class: $f_{0}=12$
Frequency of the class succeeding the modal class: $f_{2}=11$
Size of class: $h=10$
Using the formula:

$$
\begin{aligned}
\text { Mode } & =l+\left(\frac{f_{1}-f_{0}}{2 f_{1}-f_{0}-f_{2}}\right) \times h \\
& =40+\left(\frac{20-12}{2 \times 20-12-11}\right) \times 10 \\
& =40+4.70=44.70
\end{aligned}
$$

Hence, mode of the given data is about 45 cars.
6. Let us rewritten the table with class intervals.

Class interval	f	$c f$
$36-38$	0	0
$38-40$	3	3
$40-42$	2	5
$42-44$	4	9
$44-46$	5	14
$46-48$	14	28
$48-50$	4	32
$50-52$	3	35
	$\mathrm{~N}=35$	

We mark the upper class limits on x-axis and cumulative frequencies on y-axis with a suitable scale.

We plot the points $(38,0)$; $(40,3)$; $(42,5)$; $(44,9) ;(46,14) ;(48,28) ;(50,32)$ and $(52,35)$. These points are joined by a free hand smooth curve to obtain a less than type ogive as shown in the figure.

Figure: Less than type ogive

To obtain median from the graph:
We first locate the point corresponding to $\frac{\mathrm{N}}{2}=\frac{35}{2}=17.5$ students on the y-axis. From this point, draw a line parallel to the x-axis to cut the curve at P. From the point P, draw a perpendicular PQ on the x-axis to meet it at Q . The x-coordinate of Q is 46.5 . Hence, the median is 46.5 kg .
Let us verify this median using the formula.

$$
\begin{aligned}
\text { Median } & =l+\left(\frac{\frac{\mathrm{N}}{2}-c f}{f}\right) \times h \\
& =46+\left(\frac{17.5-14}{14}\right) \times 2 \\
& =46+\frac{7}{14}=46+0.5 \\
& =46.5 \mathrm{~kg} .
\end{aligned}
$$

Thus, the median is the same in both methods.
7. (i) By making the given data continuous, we get: $a=57, h=3$.

No. of mangoes	No. of boxes $\left(f_{i}\right)$	Mid-points $\left(x_{i}\right)$	$u_{i}=\frac{x_{i}-a}{h}$	$f_{i} u_{i}$
$49.5-52.5$	15	51	-2	-30
$52.5-55.5$	110	54	-1	-110
$55.5-58.5$	135	$a=57$	0	0
$58.5-61.5$	115	60	1	115
$61.5-64.5$	25	63	2	50
	$\sum f_{i}=400$			$\sum f_{i} u_{i}=25$

$\therefore \quad$ Mean $=a+h\left(\frac{\sum f_{i} u_{i}}{\sum f_{i}}\right)=57+3 \times\left(\frac{25}{400}\right)=57+\frac{75}{400} \cong 57.19$.
(ii) Step devitation method
(iii) Vikram Singh believes in quality serving, fruits will remian fresh and free from germs and flies.

WORKSHEET-131

1. Sum of 11 numbers $=11 \times 35=385$

Sum of first 6 numbers $=6 \times 32=192$
Sum of last 6 numbers $=6 \times 37=222$
$\therefore 6^{\text {th }}$ number $=192+222-385=29$.
2. We have

$$
\begin{aligned}
& \text { Mode } & =3 \text { Median }-2 \text { Mean } \\
\Rightarrow & 45 & =3 \text { Median }-2 \times 27 \\
\Rightarrow & \text { Median } & =33 .
\end{aligned}
$$

3. 25-30

Hint: $\frac{N}{2}=\frac{5+8+3+2}{2}=9$.
4. Required number of athletes

$$
=2+4+5+71=82 .
$$

5.

Class interval	Frequency f_{i}	x_{i}	$d_{i}=$ $x_{i}-a$	$u_{i}=\frac{d_{i}}{20}$	$f_{i} u_{i}$
$0-20$	17	10	-42	-2.1	-35.7
$20-40$	f_{1}	30	-22	-1.1	$-1.1 f_{1}$
$40-60$	32	50	-2	-0.1	-3.2
$60-80$	f_{2}	70	18	0.9	$0.9 f_{2}$
$80-100$	19	90	38	1.9	36.1
	$\Sigma f_{i}=120$		$\sum f_{i} u_{i}=-28-1.1 f_{1}+0.9 f_{2}$		

Let us assumed mean be $a=52$
Here,

$$
h=20
$$

Using the formula:

$$
\begin{align*}
& \text { Mean }=a+\frac{\Sigma f_{i} u_{i}}{\Sigma f_{i}} \times h \\
& \Rightarrow \quad 50=52+\frac{-2.8-1.1 f_{1}+0.9 f_{2}}{120} \times 20 \\
& \Rightarrow \quad 1.1 f_{1}-0.9 f_{2}=9.2 \tag{i}\\
& \text { But } \quad 68+f_{1}+f_{2}=120 \\
& \Rightarrow \quad f_{1}+f_{2}=52 \tag{ii}
\end{align*}
$$

Solving (i) and (ii), we obtain

$$
f_{1}=28
$$

$$
\text { and } \quad f_{2}=24
$$

6. Let us convert the given data into less than type distribution.

Class interval	f	Lifetimes (in hrs.)	$c f$
$0-20$	10	less than 20	10
$20-40$	35	less than 40	45
$40-60$	52	less than 60	97
$60-80$	61	less than 80	158
$80-100$	38	less than 100	196
$100-120$	29	less than 120	225

We mark the upper class limits along the x-axis with a suitable scale and the cumulative frequencies along the y-axis with a suitable scale. For this, we plot the points $\mathrm{A}(20,10), \mathrm{B}(40,45), \mathrm{C}(60,97), \mathrm{D}(80,158)$,
$E(100,196)$ and $F(120,225)$ on a graph paper. These points are joined by a free hand smooth curve to obtain a less than type ogive as shown in the given figure.

Figure: Less than type ogive
7. The given distribution can be again represented with the cumulative frequencies as given below:

Class interval	f_{i}	x_{i}	$c f$	$f_{i} x_{i}$
$100-120$	12	110	12	1320
$120-140$	14	130	26	1820
$140-160$	8	150	34	1200
$160-180$	6	170	40	1020
$180-200$	10	190	50	1900
	50			

$$
\begin{array}{lrl}
\text { Mean: } & \text { Mean }=\frac{\Sigma f_{i} x_{i}}{\Sigma f_{i}} \\
\because & & \Sigma f_{i}=50 \text { and } \Sigma f_{i} x_{i}=7260 \\
\therefore & \text { Mean }=\frac{7260}{50}=145.20 .
\end{array}
$$

Hence, the mean is ` 145.20
Median:

$$
\begin{aligned}
& \text { Median }=l+\left(\frac{\frac{\mathrm{N}}{2}-c f}{f}\right) \times h \\
& \because \mathrm{~N}=50, \frac{\mathrm{~N}}{2}=25, f=14, c f=12, \\
& \quad l=120 \text { and } h=20 \\
& \begin{aligned}
\therefore \quad \text { Median } & =120+\left(\frac{25-12}{14}\right) \times 20 \\
& =120+18.57=138.57
\end{aligned}
\end{aligned}
$$

Hence, the median is ${ }^{`} 138.57$.
Mode:

$$
\begin{gathered}
\text { Mode }=l+\left(\frac{f_{1}-f_{0}}{2 f_{1}-f_{0}-f_{2}}\right) \times h \\
\because \quad l=120, f_{1}=14, f_{0}=12 \\
f_{2}=8 \text { and } h=20 \\
\therefore \quad \text { Mode }=120+\left(\frac{14-12}{2 \times 14-12-8}\right) \times 20 \\
=120+\frac{40}{8}=125
\end{gathered}
$$

Hence, the mode is ` 125.

8. | C.I. | No. of consumers $\left(f_{i}\right)$ | (c.f.) |
| :--- | :---: | :---: |
| $65-85$ | 4 | 4 |
| $85-105$ | 5 | 9 |
| $105-125$ | 13 | $22=$ c.f. |
| $125-145$ | $20=f$ | 42 |
| $145-165$ | 14 | 56 |
| $165-185$ | 8 | 64 |
| $185-205$ | 4 | 68 |
| | $\mathrm{~N}=68$ | |

$\therefore \frac{\mathrm{N}}{2}=\frac{68}{2}=34 \quad \therefore$ c.f. just greater than 34 is 42.
\therefore Median class is $125-145$.
\therefore Median $=l+\frac{\frac{\mathrm{N}}{2}-c . f .}{f} \times h$

$$
\begin{aligned}
& =125+\frac{34-22}{20} \times 20 \\
& =125+12=137 .
\end{aligned}
$$

(ii) $20+14+8+4=46$ families.
(iii) Since, Mr Sharma is saving electricity so his consumption is less, which means his monthly bill will also be less. So, he believes in saving and hence is responsible also.

$$
\text { WORKSHEET- } 132
$$

1. 30-40

Hint:

Class interval (C.I.)	Frequency (f)	Cumulative Frequency
$0-10$	4	4
$10-20$	4	8
$20-30$	8	16
$30-40$	10	26
$40-50$	12	38
$50-60$	8	46
$60-70$	4	50

2. 45

Hint:

Draw a line parallel to the x-axis at the point $y=\frac{40}{2}=20$. This line cuts the curve at a point. From this point, draw a perpendicular to the x-axis. The abscissa of the point of intersection of this perpendicular with the x-axis determines the median of the data.
3. The given distribution can also be represented as follows:

Class interval	Frequency
$0-10$	3
$10-20$	9
$20-30$	15
$30-40$	30
$40-50$	18
$50-60$	5

As the maximum frequency is 30 , the modal class is 30-40.
4.

C.I.	f_{i}	x_{i}	$f_{i} x_{i}$
$1-3$	9	2	18
$3-5$	22	4	88
$5-7$	27	6	162
$7-10$	17	8.5	144.5
	$\Sigma f_{i}=75$		$\Sigma f_{i} x_{i}=412.5$

Mean $=\frac{\Sigma f_{i} x_{i}}{\Sigma f_{i}}=\frac{412.5}{75}=5.5$.
5. In the given distribution, the classes are in the inclusive form. Let us convert them into exclusive form by subtracting $\frac{163-162}{2}$, i.e., 0.5 from lower limit and adding the same to upper limit of each class.

Class interval	f
$159.5-162.5$	15
$162.5-165.5$	118
$165.5-168.5$	142
$168.5-171.5$	127
$171.5-174.5$	18

Here, the maximum frequency is 142.
$\therefore l=165.5, f_{1}=142, f_{0}=118, f_{2}=127, h=3$
Now,

$$
\begin{aligned}
\text { mode } & =l+\left(\frac{f_{1}-f_{0}}{2 f_{1}-f_{0}-f_{2}}\right) \times h \\
& =165.5+\left(\frac{142-118}{284-118-127}\right) \times 3 \\
& =165.5+1.85=167.35
\end{aligned}
$$

Hence, the modal height of the students is 167.35 cm .
6. The given data may be re-tabulated by the following manner with corresponding cumulative frequencies.

Heights (in cm.) C.I.	No. of girls (f)	Cumulative frequency $(c f)$
Below 140	4	4
$140-145$	7	11
$145-150$	18	29
$150-155$	11	40
$155-160$	6	46
$160-165$	5	51
	$\mathrm{~N}=51$	

Now, $\mathrm{N}=51$. So, $\frac{\mathrm{N}}{2}=25.5$.
This observation lies in the class 145-150.
Then $l=145, c f=11, f=18, h=5$
Now, median $=l+\left(\frac{\frac{\mathrm{N}}{2}-c f}{f}\right) \times h$

$$
\begin{aligned}
& =145+\left(\frac{25.5-11}{18}\right) \times 5 \\
& =149.03
\end{aligned}
$$

Hence, the median height of the girls is 149.03 cm .
7.

C.I.	f_{i}	x_{i}	$f_{i} x_{i}$
$10-12$	7	11	77
$12-14$	12	13	156
$14-16$	18	15	270
$16-18$	13	17	221
	$\sum f_{i}=50$		$\sum f_{i} x_{i}=724$

\therefore Mean mileage $=\frac{\Sigma f_{i} x_{i}}{\Sigma f_{i}}=\frac{724}{50}$

$$
=14.48 \mathrm{~km} / l
$$

(ii) No, the manufacturer is claiming mileage $1.52 \mathrm{~km} / l$ more than average mileage.
(iii) The manufacturer should be honest with his customer.
8. 69.5.

Hint: Change the given distribution into less than type and more than type distributions. For drawing the 'less than type' ogive, take upper class limits and corresponding
cumulative frequencies; and for drawing the 'more than type' ogive take lower class limits and corresponding cumulative frequencies.

WORKSHEET-133

1. $x_{1}+x_{2}+$ \qquad $+x_{n}=n \times \bar{x}$
$\Rightarrow \frac{x_{1}}{k}+\frac{x_{2}}{k}+$. \qquad $+\frac{x_{n}}{k}=\frac{n}{k} \bar{x}$
(Dividing throughout by k)
$\Rightarrow \frac{\frac{x_{1}}{k}+\frac{x_{2}}{k}+\ldots \ldots \ldots+\frac{x n}{k}}{n}=\frac{\bar{x}}{k}$
(Dividing throughout by n)
\Rightarrow Required mean $=\frac{\bar{x}}{k}$.
2. The first ten prime numbers are:
$2,3,5,7,11,13,17,19,23,29$.
Median $=\frac{11+13}{2}=\frac{24}{2}=12$.
3. \quad Mean $=\frac{\Sigma f_{i} x_{i}}{\Sigma f_{i}}$

$$
\begin{aligned}
& \Rightarrow \quad 15=\frac{\begin{array}{r}
5 \times 6+10 \times k+15 \times 6+20 \\
\times 10+25 \times 5
\end{array}}{6+k+6+10+5} \\
& \Rightarrow \frac{445+10 k}{27+k}=15 \\
& \Rightarrow \quad k=8 \text {. }
\end{aligned}
$$

4. False, because the values of these three measures depend upon the type of data, so it can be the same.
5. Let us use the assumed mean method to find the mean of the given data.

Marks (C.I.)	No. of students $\left(f_{i}\right)$	Class mark $\left(x_{i}\right)$	$d_{i}=$ $x_{i}-35$	$f_{i} d_{i}$
$0-10$	4	5	-30	-120
$10-20$	6	15	-20	-120
$20-30$	8	25	-10	-80
$30-40$	10	35	0	0
$40-50$	12	45	10	120
$50-60$	30	55	20	600
	$\Sigma f_{i}=70$	$d_{i}=400$		

Here, assumed mean, $a=35$
Now, required mean $=a+\frac{\Sigma f_{i} d_{i}}{\Sigma f_{i}}$
$=35+\frac{400}{70}=35+5.71=40.71$.
6. Since mode $=36$, which lies in the class interval 30-40, so the modal class is 30-40.
$\therefore f_{1}=16, f_{0}=f, f_{2}=12, l=30$ and $h=10$.
Now, \quad mode $=l+\left(\frac{f_{1}-f_{0}}{2 f_{1}-f_{0}-f_{2}}\right) \times h$

$$
\begin{array}{ll}
\Rightarrow & 36
\end{array} \begin{array}{ll}
\Rightarrow & 30+\left(\frac{16-f}{32-f-12}\right) \times 10 \\
\Rightarrow & \frac{6}{10}
\end{array}=\frac{16-f}{20-f} .
$$

7.31.5 marks.

Hint:

Classes	No. of students	Cumulative frequency
$0-10$	5	5
$10-20$	8	13
$20-30$	6	19
$30-40$	10	29
$40-50$	6	35
$50-60$	6	41

Draw the ogive by plotting the points: $(10,5),(20,13),(30,19),(40,29),(50,35)$ and $(60,41)$. Here $\frac{\mathrm{N}}{2}=20.5$. Locate the point on the ogive whose ordinate is 20.5. The x-coordinate of this point will be the median.
8. We prepare the cumulative frequency table by less than method as given below:

Scores	Fre- quency (f)	Score less than	Cumu- lative fre- quency (f)	Point
$200-250$	30	250	30	$(250,30)$
$250-300$	15	300	45	$(300,45)$
$300-350$	45	350	90	$(350,90)$
$350-400$	20	400	110	$(400,110)$
$400-450$	25	450	135	$(450,135)$
$450-500$	40	500	175	$(500,175)$
$500-550$	10	550	185	$(550,185)$
$550-600$	15	600	200	$(600,200)$

We plot the points given in above table on a graph paper and then join them by free hand smooth curve to draw the cumulative frequency curve by less than method.
Similarly for the cumulative frequency curve by more than method, we prepare the corresponding frequency table.

Scores	Fre- quency (f)	Score more than	Cumu- lative fre- quency $(c f)$	Point
$200-250$	30	200	200	$(200,200)$
$250-300$	15	250	170	$(250,170)$
$300-350$	45	300	155	$(300,155)$
$350-400$	20	350	110	$(350,110)$
$400-450$	25	400	90	$(400,90)$
$450-500$	40	450	65	$(450,65)$
$500-550$	10	500	25	$(500,25)$
$550-600$	15	550	15	$(550,15)$

We plot the points given in this last table on the same graph and join them by free hand smooth curve to draw the cumulative frequency curve by more than method (see figure).
Median: The two curves intersect each other at a point. From this point, we draw a perpendicular on the x-axis. The foot of this perpendicular is $\mathrm{P}(375,0)$. The abscissa of the point P , i.e., 375 is the required median. Hence, the median is 375 .

Figure: Less than and more than type cumulative frequency curves

CHAPTER TEST

1. Mode $=3$ Median -2 Mean
$80=3$ Median - 2(110)
$80=3$ Median -220
3 Median $=220+80$

$$
\text { Median }=\frac{300}{3}=100 .
$$

2. It will be $2+4+5+71=82$.
3. 17.5

Hint: First, transform the given classintervals into exclusive form and then find the cumulative frequency table.
Here, $\mathrm{N}=13+10+15+8+11=57$

$$
\therefore \quad \frac{\mathrm{N}}{2}=28.5 .
$$

4.

\begin{tabular}{|c|c|}

\hline \begin{tabular}{c}
Monthly income

(in `)

 \&

No. of

families
\end{tabular}

\hline $10000-13000$ \& 15

$13000-16000$ \& 16

$16000-19000$ \& 19

$19000-22000$ \& 17

$22000-25000$ \& 18

25000 or more \& 15

\hline
\end{tabular}

Hence, required number of families is 19 .
5. No, because an ogive is a graphical representation of a cumulative frequency distribution.
6. Yes; as we know
mode $=3$ median -2 mean
$\Rightarrow 3$ median $=$ mode +2 mean
\Rightarrow Median $=\frac{1}{3}$ mode $+\frac{2}{3}$ mean

$$
\begin{aligned}
& =\text { mode }-\frac{2}{3} \text { mode }+\frac{2}{3} \text { mean } \\
& =\text { mode }+\frac{2}{3}(\text { mean }- \text { mode }) .
\end{aligned}
$$

7.

C.I.	x_{i}	f_{i}	$\frac{x_{i}-\mathrm{A}}{h}$	$f_{i} u_{i}$
$800-820$	810	7	$-\frac{40}{20}=-2$	-14
$820-840$	830	14	$-\frac{20}{20}=-1$	-14
$840-860$	850	19	$\frac{0}{20}=0$	0
$860-880$	870	15	$\frac{20}{20}=1$	15
$880-900$	890	9	$\frac{40}{20}=2$	18
	$\Sigma f_{i}=64$		$\Sigma f_{i} u_{i}=5$	

Let assumed mean be

$$
\begin{aligned}
\mathrm{A} & =850 \\
h & =20 \\
\text { Mean } & =\mathrm{A}+\left(\frac{\Sigma u_{i} f_{i}}{\Sigma f_{i}}\right) \times h \\
& =850+\left(\frac{5}{64}\right) \times 20 \\
& =850+1.5625=851.5625 .
\end{aligned}
$$

Hence, the required mean is 851.5625 .
8. \quad Mode $=l+\left(\frac{f_{1}-f_{0}}{2 f_{1}-f_{0}-f_{2}}\right) \times h$

Here, $l=30, f_{1}=45, f_{0}=30, f_{2}=12, h=10$

$$
\begin{aligned}
\therefore \quad \text { Mode } & =30+\left(\frac{45-30}{90-30-12}\right) \times 10 \\
& =30+3.125=33.125 \text { marks. }
\end{aligned}
$$

9. (i)

\begin{tabular}{|c|c|c|c|}

\hline \begin{tabular}{c}
Class intervals

(in daily pocket

allowances) (in `)

 \&

Frequency

(No. of children)

$\left(f_{i}\right)$

 \&

Mid-points

of C.I.

$\left(x_{i}\right)$
\end{tabular} \& $f_{i} x_{i}$

\hline $11-13$ \& 7 \& 12 \& 84

$13-15$ \& 6 \& 14 \& 84

$15-17$ \& 9 \& 16 \& 144

$17-19$ \& 13 \& 18 \& 234

$19-21$ \& x \& 20 \& 20

$21-23$ \& 5 \& 22 \& 110

$23-25$ \& 4 \& 24 \& 96

\hline \& $\Sigma f_{i}=44+x$ \& \& $\Sigma f_{i} x_{i}=752+20 x$

\hline
\end{tabular}

$$
\begin{array}{rlrl}
& \therefore & \text { Mean } & =\frac{\Sigma f_{i} x_{i}}{\Sigma f_{i}}=\frac{752+20 x}{44+x} \\
& \text { As Mean } & =` 18 \text { (given) } \therefore 18=\frac{752+20 x}{44+x} \\
& \Rightarrow & 792+18 x & =752+20 x \Rightarrow 40=2 x \Rightarrow x=20 .
\end{array}
$$

(ii) Arithmetic mean of grouped data.
(iii) One shouldn't be spend thrift, but should save his money for future use.

WORKSHEET- 135

1. Prime number less than 23
are $2,3,5,7,11,13,17$
\therefore Probability $=\frac{7}{90}$.
2. Favourable number of cases $=9$

Total number of cases $=36$
$\therefore \quad$ Required probability $=\frac{9}{36}=\frac{1}{4}$.
3. Factors of 8 are: 1, 2, 4, 8
\therefore Total numbers $=8$
\therefore Required probability $=\frac{4}{8}=\frac{1}{2}$.
4. No, because the number of favourable outcomes of getting ' 6 ' and 'not 6' are respectively 1 and 5 ; and so their probabilities are $\frac{1}{6}$ and $\frac{5}{6}$.
5. Sample space is:

$$
\begin{aligned}
S= & \{H H H, H H T, H T H, ~ H T T, ~ T H H, ~ T H T, ~ \\
& \text { TTH, TTT }\}
\end{aligned}
$$

$\therefore \quad n(s)=8$
(i) Let $\mathrm{E}=$ getting at least 2 heads
$=\{$ THH, HTH, HHT, HHH $\}$
$\therefore \quad n(\mathrm{E})=4$
$\therefore \quad \mathrm{P}(\mathrm{E})=\frac{4}{8}=\frac{1}{2}$.
(ii) Let $\mathrm{F}=$ getting at most 2 heads

$$
\therefore \quad \mathrm{F}=\{\mathrm{TTT}, \mathrm{TTH}, \mathrm{THT}, \mathrm{HTT}, \mathrm{HHT},
$$ HTH, THH

$\therefore \quad n(\mathrm{~F})=7$
$\therefore \quad \mathrm{P}(\mathrm{F})=\frac{7}{8}$.
6. (i) $\frac{1}{23} \quad$ (ii) $\frac{5}{46}$

Hints:

(i) Prime numbers are 5 and 7.
(ii) Perfect square numbers are $9,16,25,36,49$.
7. Let $\mathrm{A}=$ The event that 5 will not come up either time.
Now sample space is given by

$$
\begin{aligned}
\mathrm{S}= & \{(1,1),(1,2),(1,3),(1,4),(1,5), \\
& (1,6),(2,1),(2,2),(2,3),(2,4),(2,5), \\
& (2,6),(3,1),(3,2),(3,3),(3,4), \\
& (3,5),(3,6),(4,1),(4,2),(4,3),(4,4), \\
& (4,5),(4,6),(5,1),(5,2),(5,3),(5,4), \\
& (5,5),(5,6),(6,1),(6,2),(6,3),(6,4), \\
& (6,5),(6,6)\}
\end{aligned}
$$

Total number of outcomes in sample space

$$
n(\mathrm{~S})=36
$$

$\therefore \quad \overline{\mathrm{A}}=\{(1,5),(2,5),(3,5),(4,5)$, $(5,1),(5,2),(5,3),(5,4)$, $(5,5),(5,6),(6,5)\}$
$\therefore \quad n(\overline{\mathrm{~A}})=11$
$\therefore \quad n(\mathrm{~A})=n(\mathrm{~S})-n(\overline{\mathrm{~A}})=36-11=25$
(i) $\mathrm{P}(\mathrm{A})=\frac{n(\mathrm{~A})}{n(\mathrm{~S})}=\frac{25}{36}$
(ii) $\mathrm{P}(\overline{\mathrm{A}})=\frac{n(\overline{\mathrm{~A}})}{n(\mathrm{~S})}=\frac{11}{36}$.
8. Total number of pens $=144$

It is the number of all possible outcomes.
Number of defective pens $=20$
Number of good pens $=144-20=124$
(i) Required probability

$$
=\frac{\text { No. of good pens }}{\text { Total no. of pens }}=\frac{124}{144}=\frac{31}{36}
$$

(ii) Required probability

$$
=\frac{\text { No. of defective pens }}{\text { Total no. of pens }}=\frac{20}{144}=\frac{5}{36}
$$

(iii) Rationality.
9. The sample space is

$$
\begin{array}{rlrl}
& & S & =\{1,2,3,4,5,6,7,8\} \\
\therefore & n(S) & =8
\end{array}
$$

(i) Let E_{1} be the event that the arrow will point at 8 , then

$$
\begin{aligned}
n\left(\mathrm{E}_{1}\right) & =1 \\
\therefore \quad \mathrm{P}\left(\mathrm{E}_{1}\right) & =\frac{n\left(\mathrm{E}_{1}\right)}{n(\mathrm{~S})}=\frac{1}{8} .
\end{aligned}
$$

(ii) Let E_{2} be the event that the arrow will point at 1,3,5 or 7; then

$$
\begin{aligned}
n\left(\mathrm{E}_{2}\right) & =4 \\
\therefore \quad \mathrm{P}\left(\mathrm{E}_{2}\right) & =\frac{n\left(\mathrm{E}_{2}\right)}{n(\mathrm{~S})}=\frac{4}{8}=\frac{1}{2}
\end{aligned}
$$

(iii) Let E_{3} be the event that the arrow will point at $3,4,5,6,7$, or 8 ; then

$$
\begin{aligned}
& n\left(\mathrm{E}_{3}\right)=6 \\
& \therefore \quad \mathrm{P}\left(\mathrm{E}_{3}\right)= \\
&=\frac{n\left(\mathrm{E}_{3}\right)}{n(\mathrm{~S})}=\frac{6}{8}=\frac{3}{4} .
\end{aligned}
$$

(iv) Let E_{4} be the event that the arrow will point at $1,2,3,4,5,6,7$ or 8 ; then

$$
\begin{aligned}
& n\left(E_{4}\right)=8 \\
& \therefore \quad \mathrm{P}\left(\mathrm{E}_{4}\right)=\frac{n\left(\mathrm{E}_{4}\right)}{n(\mathrm{~S})}=\frac{8}{8}=1 \text {. }
\end{aligned}
$$

WORKSHEET-136

1. Hint: Outcomes in favourable event of getting the sum as a perfect square are $(1,3),(2,2),(3,1),(3,6),(4,5),(5,4),(6,3)$.
2. Hint: $|x| \leq 4 \Rightarrow-4 \leq x \leq 4$

$$
\Rightarrow x=-4,-3,-2,-1,0,1,2,3,4 .
$$

3. Total number of outcomes $=52$

Since, the drawn card should not be red or queen
Total number of red cards (including a red queen) $=13$
Total number of queens (excluding red queen) $=3$
\therefore Total favourable outcomes $=13+3=16$
\therefore Required probability $=\frac{16}{52}=\frac{4}{13}$.
4. No, because the theoretical probability of getting a head on tossing a coin is $\frac{1}{2}$ and the experimental probability tends to $\frac{1}{2}$ when the number of tosses increases.

OR

$n(S)=100$
Let E be the event of getting a prime.
The primes from 1 to 100 are:
$2,3,5,7,11,13,17,19,23,29,31,37,41,43$, $47,53,59,61,67,71,73,79,83,89,97$.
$\therefore \quad n(\mathrm{E})=25$
Now, $\quad P(E)=\frac{n(E)}{n(S)}=\frac{25}{100}=\frac{1}{4}$.
5. Total cards $=52$

Since card drawn is neither a king nor queen
\therefore favourable cards are $=52-(4+4)$

$$
=52-8=44
$$

\therefore Required probability $=\frac{44}{52}=\frac{11}{13}$.
6. False; because the outcomes are not equally likely. As for
No girl: Cases are $\{B B B\}$ (i.e., Three boys)
One girl: Cases are $\{B G B, B B G, G B B\}$
Two girls: Cases are $\{B G G, G B G, G G B\}$
All girls: Cases are \{GGG\}
7. The sample space is

$$
\begin{aligned}
\mathrm{S} & =\{\mathrm{HH}, \mathrm{HT}, \mathrm{TH}, \mathrm{TT}\} \\
\therefore & n(\mathrm{~S})
\end{aligned}=4
$$

(i) The outcomes for at least one head:
\{HH, HT, TH\}
\therefore Probability (at least one head) $=\frac{3}{4}$.
(ii) The outcomes for at most one head:
\{HT, TH, TT\}
\therefore Probability (at most one head) $=\frac{3}{4}$.
(iii) The outcomes for one head: $\{\mathrm{HT}, \mathrm{TH}\}$
\therefore Probability (one head) $=\frac{2}{4}=\frac{1}{2}$.

OR

Total number of students $=23$
$\therefore \quad n(\mathrm{~S})=23$
Let E be the event that the selected student is not from A, B and C .

$$
\begin{array}{ll}
\therefore & n(\mathrm{E})=23-4-8-5=6 \\
\text { Now, } & \mathrm{P}(\mathrm{E})=\frac{n(\mathrm{E})}{n(\mathrm{~S})}=\frac{6}{23} .
\end{array}
$$

8. Total face cards $=12$

Number of black face cards $=6$
Number of cards left after removing 6 black face cards $=52-6=46$
$\therefore \quad$ (i) Probability (a face card) $=\frac{6}{46}=\frac{3}{23}$
(ii) Probability (a red card) $=\frac{26}{46}=\frac{13}{23}$
(iii) Probability (a black card) $=\frac{20}{46}=\frac{10}{23}$
(iv) Probability (a king) $=\frac{2}{46}=\frac{1}{23}$
9. Total cards $=65$
(i) P (one digit number i.e., $6,7,8,9)=\frac{4}{65}$.
(ii) P (Number divisible by 5 , i.e., $10,15,20$, $25,30,35,40,45,50,55,60,65,70)=$ $\frac{13}{65}=\frac{1}{5}$.
(iii) $\mathrm{P}($ odd number $<30)=\frac{11}{65}$ i.e., $\mathrm{P}(7,9,11,13,15,17,19,21,23,25$, 27, 29).
(iv) Non composite number between 50 and 70 are : 53, 59, 61, 67, 69
\therefore Probability of getting a non-composite number between 50 and 70 is $=\frac{5}{19}$
$\therefore \mathrm{P}($ composite number $)=1-\frac{5}{19}=\frac{14}{19}$.

WORKSHEET - 137

1. Required prime numbers are:
$2,3,5,7,11,13,17,19,23,29$.
\therefore Required probability $=\frac{10}{30}=\frac{1}{3}$.
2. Hint: The sum of probabilities of having a particular event and not having the same event is one.
3. Total balls $=5+8+4+7=24$

Let
$\mathrm{G}=$ getting a green ball
Total green ball $=4$.

$$
\therefore \quad \mathrm{P}(\mathrm{G})=\frac{4}{24}=\frac{1}{6}
$$

$$
\therefore \quad P(\operatorname{not} G)=1-\frac{1}{6}=\frac{5}{6} .
$$

4.False, because the probability of each outcome will be $\frac{1}{2}$ only when the two outcomes are equally likely otherwise not.
5. No, because areas of regions 3,5 and 7 are not equal.
6. All possible outcomes are given by $\{(1,1),(1,2),(1,3),(1,4),(1,5),(1,6)$, $(2,1),(2,2),(2,3),(2,4),(2,5),(2,6)$,
$(3,1),(3,2),(3,3),(3,4),(3,5),(3,6)$,
$(4,1),(4,2),(4,3),(4,4),(4,5),(4,6)$,
$(5,1),(5,2),(5,3),(5,4),(5,5),(5,6)$,
$(6,1),(6,2),(6,3),(6,4),(6,5),(6,6)\}$
(i) $\frac{5}{36}$

Hint: Favourable outcomes:
$(2,6),(6,2),(3,5),(5,3),(4,4)$.
(ii) 0

Hint: No, favourable outcome is possible.
(iii) 1

Hint: Favourable outcomes are the same as the outcomes in sample space.
7. (i) Total cards left

$$
\begin{aligned}
& =52-(4 \text { King })-(4 \text { Queen })-(4 \text { Aces }) \\
& =52-12=40
\end{aligned}
$$

Now probability (black face card)

$$
=\frac{2}{40}=\frac{1}{20}
$$

(ii) A red card $=\frac{20}{40}=\frac{1}{2}$.
8. Number of all cards $=50-5+1=46$
i.e.,
$n(\mathrm{~S})=46$
(i) Let E_{1} be the event that the number on the card taken out is a prime less than 10.
Prime numbers from 5 to 9 are 5 and 7 .

$$
\begin{array}{ll}
\therefore & n\left(\mathrm{E}_{1}\right)=2 \\
\therefore & \mathrm{P}\left(\mathrm{E}_{1}\right)=\frac{n\left(\mathrm{E}_{1}\right)}{n(\mathrm{~S})}=\frac{2}{46}=\frac{1}{23} .
\end{array}
$$

(ii) Let E_{2} be the event that the number on the card taken out is a perfect square. The perfect square numbers from 5 to 50 are $9,16,25,36$ and 49.

$$
\begin{array}{ll}
\therefore & n\left(\mathrm{E}_{2}\right)=5 \\
\therefore & \mathrm{P}\left(\mathrm{E}_{2}\right)=\frac{n\left(\mathrm{E}_{2}\right)}{n(\mathrm{~S})}=\frac{5}{46} .
\end{array}
$$

9. Total $=12$

A : extremely patient $=3$
B : extremely honest $=6$
$\therefore C$: extremely kind $=12-9=3$
(i) $\mathrm{P}(\mathrm{A})=\frac{3}{12}=\frac{1}{4}$
(ii) $\mathrm{P}(\mathrm{B}$ or C$)=\frac{6+3}{12}=\frac{9}{12}=\frac{3}{4}$.

Extremely patient.

WORKSHEET- 138

1. Prime numbers are: $2,3,5,7,11$
\therefore Probability $=\frac{5}{10}=\frac{1}{2}$.
2. Given: $\quad P(E)=3 P\left(E^{\prime}\right)$

We have $P(E)+P\left(E^{\prime}\right)=1$
(i) and (ii) gives $\mathrm{P}(\mathrm{E})=3\{1-\mathrm{P}(\mathrm{E})\}$
i.e., $4 \mathrm{P}(\mathrm{E})=3$, i.e., $\mathrm{P}(\mathrm{E})=\frac{3}{4}$.
3. The number of outcomes when a pair of dice is rolled $=6^{2}=36$.
The outcomes such that the sum is divisible by 3 are:
$(1,2),(1,5),(2,1),(2,4),(3,3),(3,6),(4,2)$, $(4,5),(5,1),(5,4),(6,3),(6,6)$.
These are 12 outcomes.
The outcomes such that the sum is divisible by 2 are:
$(1,1),(1,3),(1,5),(2,2),(2,4),(2,6),(3,1)$,
$(3,3),(3,5),(4,2),(4,4),(4,6),(5,1),(5,3)$, $(5,5),(6,2),(6,4),(6,6)$.
These are 18 outcomes.
The outcomes such that the sum is divisible by 6 are:
$(1,5),(2,4),(3,3),(4,2),(5,1),(6,6)$.

These are 6 outcomes.
Now, the number of outcomes which are divisible by 3 or 2 is $12+18-6=24$.
Hence, the required probability $=\frac{24}{36}=\frac{2}{3}$.
4. Number of cards $=50$

Prime numbers from 51 to 100 are: 53, 59, $61,67,71,73,79,83,89,97$
Therefore, number of all possible outcomes $=50$.
And number of favourable outcomes $=10$.
\therefore Required probability $=\frac{10}{50}=\frac{1}{5}$.
5. All possible outcomes are given by
$S=\{1,2,3, \ldots . ., 1000\}$
$\therefore n(S)=1000$
(i) Let E_{1} be the event that the first player wins a prize. Then,
$\mathrm{E}_{1}=$ Perfect square numbers greater than 500 and less than 1001.
= 529, 576, 625, 676, 729, 784, 841, 900, 961.
$\therefore n\left(\mathrm{E}_{1}\right)=9$
Now, $\mathrm{P}\left(\mathrm{E}_{1}\right)=\frac{n\left(\mathrm{E}_{1}\right)}{n(\mathrm{~S})}=\frac{9}{1000}$.
(ii) Let E_{2} be the event that the second player wins a prize, if the first has won.

$$
\therefore \quad n\left(\mathrm{E}_{2}\right)=n\left(\mathrm{E}_{1}\right)-1=9-1=8
$$

And number of all possible outcomes

$$
=n(\mathrm{~S})-1=1000-1=999
$$

Now, $\mathrm{P}\left(\mathrm{E}_{2}\right)=\frac{n\left(\mathrm{E}_{2}\right)}{999}=\frac{8}{999}$.
6. Let E_{1} be the event 'the mobile phone is acceptable to Varnika' and E_{2} be the event 'the mobile phone is acceptable to the trader'.
$\therefore \quad n\left(\mathrm{E}_{1}\right)=$ Number of good mobile phones
$=42$
And $n\left(E_{2}\right)=$ Number of good mobile phones + Number of mobile phones having only minor defects
$=42+3=45$

Number of all mobile phones is given by $n(\mathrm{~S})=48$
(i) $\quad \mathrm{P}\left(\mathrm{E}_{1}\right)=\frac{n\left(\mathrm{E}_{1}\right)}{n(\mathrm{~S})}=\frac{42}{48}=\frac{7}{8}$
(ii) $\mathrm{P}\left(\mathrm{E}_{2}\right)=\frac{n\left(\mathrm{E}_{2}\right)}{n(\mathrm{~S})}=\frac{45}{48}=\frac{15}{16}$.

7. Consider | $x:$ | 1 | 4 | 9 | 16 | |
| ---: | :---: | :---: | :---: | :---: | :---: |
| y | $x y:$ | | | | |
| 1 | | 1 | 4 | 9 | 16 |
| 2 | | 2 | 8 | 18 | 32 |
| 3 | | 3 | 12 | 27 | 48 |
| 4 | | 4 | 16 | 36 | 64 |

\therefore Total possible values of distinct $(x y)$ $=15$.
Number of cases in which $x y>16=7$
$\therefore \quad$ Required probability $=\frac{7}{15}$.
8. (i) $\mathrm{P}($ odd number $)=\frac{25}{50}=\frac{1}{2}$
(ii) $\mathrm{P}($ a perfect square $)=\frac{4}{50}=\frac{2}{25}$
(iii) $\mathrm{P}($ divisible by 5$)=\frac{10}{50}=\frac{1}{5}$
(iv) $\mathrm{P}($ prime number less than 20$)=\frac{4}{50}=\frac{2}{25}$.

CHAPTER TEST

1. Number of faces having B or C

$$
\begin{aligned}
& =2+1=3 \\
\text { Number of all faces } & =6
\end{aligned}
$$

$$
P(\text { getting } B \text { or } C)=\frac{3}{6}=\frac{1}{2} .
$$

2. P (drawing a green ball)
$=3 \times \mathrm{P}($ drawing a red ball $)$

$$
\Rightarrow \quad \frac{n}{5+n}=3 \times \frac{5}{5+n} \Rightarrow n=15 .
$$

3. Total number of outcomes $=36$

Let $\quad \mathrm{E}=$ getting sum more than 10
$\therefore \quad$ Sum of digits on dice $=11$ or 12

For 11: $(5,6),(6,5)$
For 12: $(6,6)$
\therefore Favourable outcomes for events E are $(5,6),(6,5),(6,6)$

$$
\therefore \quad \mathrm{P}(\mathrm{E})=\frac{n(\mathrm{E})}{n(\mathrm{~S})}=\frac{3}{36}=\frac{1}{12} .
$$

4. Case I: 2 dice are thrown.

Number of all outcomes in the sample space, $n(S)=6^{2}=36$
Favourable numbers, $n\left(\mathrm{E}_{1}\right)=1$
$\therefore \mathrm{P}\left(\mathrm{E}_{1}\right)=\frac{1}{36}$
Case II: 1 die is thrown.
Number of all outcomes, $n(S)=6$
Favourable numbers, $\quad n\left(\mathrm{E}_{2}\right)=1$
$\therefore \mathrm{P}\left(\mathrm{E}_{2}\right)=\frac{1}{6}$
So, the student throwing one die has the better chance because he has more probability.

OR

The sample space is
S = \{HHH, HHT, HTH, HTT, THH, THT,
TTH, TTT\}
$\therefore \quad n(\mathrm{~S})=8$
The outcomes having at least two heads are $\mathrm{E}=\{\mathrm{HHH}, \mathrm{HHT}, \mathrm{HTH}, \mathrm{THH}\}$
$\therefore \quad n(\mathrm{E})=4$
$\therefore \quad \mathrm{P}(\mathrm{E})=\frac{n(\mathrm{E})}{n(\mathrm{~S})}=\frac{4}{8}=\frac{1}{2}$.
5. False, because there are equal probabilities of getting the head or tail, that is $\frac{1}{2}$.

OR
Total number of outcomes, $n(\mathrm{~S})=36$
Favourable outcomes,

$$
\begin{aligned}
& \mathrm{E}=\{(2,6),(3,5),(4,4),(5,3),(6,2)\} \\
& \therefore \quad n(\mathrm{E})=5 \\
& \therefore \quad \mathrm{P}(\mathrm{E})=\frac{5}{36} .
\end{aligned}
$$

6. There are 52 cards in the pack. Therefore, the number of outcomes in sample space is given by

$$
n(S)=52
$$

Number of hearts cards $=13$
Number of queens $=4$
Number of queens of hearts $=1$
So, number of favourable outcomes is given by

$$
n(E)=52-(13+4-1)=36
$$

Now, the required probability will be given by

$$
\mathrm{P}(\mathrm{E})=\frac{n(\mathrm{E})}{n(\mathrm{~S})}=\frac{36}{52}=\frac{9}{13} .
$$

7. (i) Probability that selected student is a car driver $=\frac{25}{100}=\frac{1}{4}$
(ii) Total students who drive bicycle

$$
=100-(25+20)=55
$$

\therefore Probability that selected student rides
on bicycle $=\frac{55}{100}=\frac{11}{20}$.
(iii) Use of bicycle should be encouraged in campus as it saves fuel and helps reducing the pollution in environment.
8. (i) Probability of getting an odd number

$$
=\frac{25}{49}
$$

(ii) Probability of getting a multiple of 5

$$
=\frac{9}{49}
$$

(iii) Probability of getting a perfect square

$$
=\frac{7}{49}
$$

(iv) Probability of getting an even prime number

$$
=\frac{1}{49} .
$$

9. Total balls in bag $=18$

No. of red ball $=x$
No. of non-red balls $=18-x$
(i) $\quad \therefore \mathrm{P}($ not red $)=\frac{18-x}{18}$
(ii) Total balls $=18+2=20$

Number of red balls $=(x+2)$

$$
\mathrm{P}(\text { red ball })=\frac{x+2}{20}
$$

Also, $\mathrm{P}\left(\right.$ red ball) in first case $=\frac{x}{18}$
According to question

$$
\begin{aligned}
& \frac{x+2}{20}=\frac{9}{8}\left(\frac{x}{18}\right) \Rightarrow \frac{x+2}{20}=\frac{x}{16} \\
& \Rightarrow \quad 4 x+8=5 x \quad \Rightarrow \quad x=8 .
\end{aligned}
$$

PRACTICE PAPERS

Practice Paper-1

Section-A

1. Sum of zeroes $(S)=-\frac{2}{\sqrt{3}}+\frac{\sqrt{3}}{4}$

$$
=\frac{3-8}{4 \sqrt{3}}=-\frac{5}{4 \sqrt{3}}
$$

Product of zeroes $(P)=-\frac{2}{\sqrt{3}} \times \frac{\sqrt{3}}{4}=-\frac{1}{2}$
Now, required polynomial will be $p(x)=x^{2}-$ $5 x+\mathrm{P}$, i.e., $p(x)=x^{2}+\frac{5}{4 \sqrt{3}} x-\frac{1}{2}$ or $p(x)=$ $4 \sqrt{3} x^{2}+5 x-2 \sqrt{3}$.
2.

$$
\begin{aligned}
\frac{147}{120} & =\frac{49}{40}=\frac{49}{4 \times 10} \\
& =\frac{12.25}{10}=1.225
\end{aligned}
$$

So, decimal expansion of $\frac{147}{120}$ terminates after three places of decimal.
3.

$\mathrm{AL}=12 \mathrm{~cm}$
$\mathrm{AB}=2 \mathrm{AL}$
$A B=2 \times 12=24 \mathrm{~cm}$.
4. Mid-point of $A B$ is:

$$
\left(\frac{3+k}{2}, \frac{4+6}{2}\right)=\left(\frac{3+k}{2}, 5\right)
$$

Then, $\left(\frac{3+k}{2}, 5\right)=(x, y)$
$\begin{array}{rlrl}\Rightarrow & x & =\frac{3+k}{2} ; y=5 \\ \text { Since, } \quad x+y-10 & =0\end{array}$
Since, $\quad x+y-10=0^{2}$

$$
\begin{array}{cc}
\Rightarrow & \frac{3+k}{2}+5-10=0 \\
\Rightarrow & 3+k=10 \\
\Rightarrow & k=7 .
\end{array}
$$

5. Mean $=\frac{\Sigma f_{i} x_{i}}{\Sigma f_{i}}$
$\Rightarrow 15=\frac{5 \times 6+10 \times k+15 \times 6+20 \times 10+25 \times 5}{6+k+6+10+5}$
$\Rightarrow \quad \frac{445+10 k}{27+k}=15$
$\Rightarrow \quad k=8$.
6. As, the sum of an event and its complementary event is unity
$\therefore \quad p+p$ (complementary event) $=1$
$\Rightarrow \quad p($ complementary event $)=1-p$.

Section-B

7. No. Prime factors of 6^{n} will be of type $2^{n} \times$ 3^{n}. As it doesn't have 5 as a prime factor, so 6^{n} can't end with the digit 5.

$$
\text { 8. } \begin{array}{rlrl}
a & =1 ; d=-3 \\
a_{n} & =-236 \\
& & & \\
\Rightarrow & a+(n-1) d & =-236 \\
\Rightarrow & 1+(n-1)(-3) & =-236 \\
\Rightarrow & & -3 n+4 & =-236 \\
\Rightarrow & & -3 n & =-240 \Rightarrow n=80 \\
\Rightarrow & & S_{n} & =\frac{n}{2}\left\{a+a_{n}\right\} \\
\Rightarrow & & S_{80} & =\frac{80}{2}\{1-236\} \\
& & =40 \times(-235)=-9400
\end{array}
$$

9.

$$
\mathrm{PQ}=\sqrt{58} \Rightarrow \mathrm{PQ}^{2}=58
$$

$\Rightarrow(k-3)^{2}+(2+5)^{2}=58$
$\Rightarrow \quad(k-3)^{2}=58-49$
$\Rightarrow \quad(k-3)^{2}=9$
$\Rightarrow \quad k-3= \pm 3 \Rightarrow k=0$ or 6 .
10. $\frac{(1+\sin \theta)(1-\sin \theta)}{(1+\cos \theta)(1-\cos \theta)}=\frac{1-\sin ^{2} \theta}{1-\cos ^{2} \theta}$

$$
\begin{aligned}
& =\frac{\cos ^{2} \theta}{\sin ^{2} \theta}=\cot ^{2} \theta \\
& =\left(\frac{7}{8}\right)^{2}=\frac{49}{64}
\end{aligned}
$$

11. $r=10$

Let $A B$ is the chord which subtend an angle of 60° at centre of circle. \therefore Area of corresponding segment

> = Area of APB
$\mathrm{A}=\frac{\pi r^{2} \theta}{360^{\circ}}-\operatorname{ar}(\triangle \mathrm{AOB})$

As $\triangle \mathrm{AOB}$ is equilateral

$$
\begin{aligned}
\therefore \quad \mathrm{A} & =\frac{\pi(10)^{2} \times 60}{360^{\circ}}-\frac{\sqrt{3}}{4} \times 10 \times 10 \\
& =\left(\frac{157}{3}-25 \sqrt{3}\right) \mathrm{cm}^{2} .
\end{aligned}
$$

12. Sample space: $\{1,2,3$, , 99\}
$\therefore \quad n(\mathrm{~S})=99$.
The numbers divisible by 3 and 5 both are numbers divisible by 15 .
So, favourable outcomes are: $\{15,30,45,60$, $75,90\}$
Let E be the event getting a number divisible by 3 and 5 .

$$
\begin{array}{ll}
\therefore & n(\mathrm{E})=6 \\
\therefore & \mathrm{P}(\mathrm{E})=\frac{n(\mathrm{E})}{n(\mathrm{~S})}=\frac{6}{99}=\frac{2}{33} .
\end{array}
$$

Section-C

13. Let x be any positive integer.

Then it is either of the form $3 q$ or $3 q+1$ or $3 q$ +2 .
Case I. $\quad x=3 q$
Cubing both sides, we get

$$
\begin{align*}
& x^{3}=(3 q)^{3}=27 q^{3}=9 m \tag{i}\\
& m=3 q^{3}
\end{align*}
$$

Case II. $\quad x=3 q+1$
Cubing both sides, we get

$$
\begin{aligned}
x^{3} & =(3 q+1)^{3} \\
& =27 q^{3}+1+3(3 q+1) \times 3 q \\
& =27 q^{3}+27 q^{2}+9 q+1 \\
& =9 q\left(3 q^{2}+3 q+1\right)+1 \\
& =9 m+1 ; \\
m & =q\left(3 q^{2}+3 q+1\right) . \quad \ldots(i i)
\end{aligned}
$$

Case III. $\quad x=3 q+2$

Cubing both sides, we get

$$
\begin{align*}
x^{3} & =(3 q+2)^{3} \\
& =27 q^{3}+8+3(3 q+2) 6 q \\
& =27 q^{3}+54 q^{2}+36 q+8 \\
& =9 q\left(3 q^{2}+6 q+4\right)+8 \\
& =9 m+8 ; \tag{iii}\\
m & =q\left(3 q^{2}+6 q+4\right) .
\end{align*}
$$

Thus, from equations (i), (ii) and (iii), it is clear that cube of any positive integer is either of the form $9 m$, or $9 m+1$ or $9 m+8$.
14. Since α, β are the zeroes of $x^{2}+p x+q$, then

$$
\alpha+\beta=-p ; \alpha \beta=q
$$

Now, $\quad \frac{1}{\alpha}+\frac{1}{\beta}=\frac{\alpha+\beta}{\alpha \beta}=-\frac{p}{q}$
and

$$
\frac{1}{\alpha} \times \frac{1}{\beta}=\frac{1}{\alpha \beta}=\frac{1}{q}
$$

So the polynomial having zeroes $\frac{1}{\alpha}$ and $\frac{1}{\beta}$
will be

$$
\begin{aligned}
p(x) & =x^{2}-\left(\frac{1}{\alpha}+\frac{1}{\beta}\right) x+\left(\frac{1}{\alpha} \times \frac{1}{\beta}\right) \\
& =x^{2}+\frac{p}{q} x+\frac{1}{q}
\end{aligned}
$$

or

$$
p(x)=q x^{2}+p x+1 .
$$

OR
Since $x=\sqrt{\frac{5}{3}}$ and $x=-\sqrt{\frac{5}{3}}$ are zeroes of $p(x)$ $=3 x^{4}+6 x^{3}-2 x^{2}-10 x-5$, so $p(x)$ is divisible by $\left(x-\sqrt{\frac{5}{3}}\right)\left(x+\sqrt{\frac{5}{3}}\right)$, i.e., $x^{2}-\frac{5}{3}$.

$$
\begin{array}{r}
x^{2}-\frac{5}{3} \begin{array}{r}
3 x^{2}+6 x+3 \\
\frac{3 x^{4}+6 x^{3}-2 x^{2}-10 x-5}{3 x^{4} \quad-5 x^{2}} \\
-\begin{array}{r}
6 x^{3}+3 x^{2}-10 x-5 \\
-6 x^{3} \quad-10 x
\end{array} \\
\hline \begin{array}{l}
3 x^{2} \\
3 x^{2} \\
-5 \\
- \\
\hline
\end{array} \\
\hline
\end{array}
\end{array}
$$

Here, other two zeroes of $p(x)$ are the two zeroes of quotient $3 x^{2}+6 x+3$
Put $\quad 3 x^{2}+6 x+3=0$
$\Rightarrow \quad 3(x+1)^{2}=0$
$\Rightarrow \quad x=-1$ and $x=-1$
$\Rightarrow \quad x=-1$ and $x=-1$
Hence, all the zeroes of $p(x)$ are $, \sqrt{\frac{5}{3}},-\sqrt{\frac{5}{3}},-1$
and -1 .
15. Let the first term and common difference of the A.P. be A and D respectively.
Now, $\quad p$ th term $=a$

$$
\begin{array}{rlrl}
& \Rightarrow & \mathrm{A}+(p-1) \mathrm{D} & =a \\
& q \text { th term } & =b \\
& \Rightarrow & \mathrm{~A}+(q-1) \mathrm{D} & =b \\
& & r \text { th term } & =c \tag{ii}\\
& \Rightarrow & \mathrm{~A}+(r-1) \mathrm{D} & =c
\end{array}
$$

Subtracting equation (ii) from (i), (iii) from (ii), (i) from (iii), we get respectively:

$$
\begin{align*}
& a-b=(p-q) \mathrm{D} \tag{iv}\\
& b-c=(q-r) \mathrm{D} \tag{v}\\
& c-a=(r-p) \mathrm{D} \tag{vi}
\end{align*}
$$

Multiplying (iv), (v) and (vi) by respectively r, p and q; and then adding the results to get $(a-b) r+(b-c) p+(c-a) q$

$$
\begin{aligned}
& =(p r-q r) \mathrm{D}+(p q-p r) \mathrm{D}+(q r-p q) \mathrm{D} \\
& =(p r-q r+p q-p r+q r-p q) \mathrm{D} \\
& =0 \times \mathrm{D}=0 . \quad \text { Hence the result. }
\end{aligned}
$$

16. Let the two digits number be $10 x+y$.

Since ten's digit exceeds twice the unit's digit by 2

$$
\begin{align*}
\therefore & x & =2 y+2 \\
\Rightarrow & x-2 y-2 & =0 \tag{i}
\end{align*}
$$

Since the number obtained by inter-changing the digits, i.e., $10 y+x$ is 5 more than three times the sum of the digits.

$$
\begin{aligned}
\therefore & 10 y+x & =3(x+y)+5 \\
\Rightarrow & 2 x-7 y+5 & =0
\end{aligned}
$$

On solving equations (i) and (ii), we obtain

$$
x=8 \text { and } y=3
$$

$\therefore \quad 10 x+y=83$
Hence, the required two-digit number is 83 .

17. Steps of construction:

Step I: First, draw a circle with radius as 3 cm and centre at O . Then take a point P so that OP $=7 \mathrm{~cm}$.
Step II: Bisect OP to find midpoint M of OP. Then take M as centre and MP = MO as radius, draw a circle to intersect the previous circle at Q and R .
Step III: Join PQ and PR which are the required tangents.
After measuring PQ and PR, we find $P Q=P R=6.32 \mathrm{~cm}$ (approximately).
So, tangents are perpendicular to radii passing through their respective points of contact. i.e., $\mathrm{PQ} \perp \mathrm{OQ}$ and $\mathrm{PR} \perp \mathrm{OR}$.

18. $B C$ is trisected at D and E.

$$
\therefore \quad \mathrm{BD}=\mathrm{DE}=\mathrm{EC}=\frac{1}{3} \mathrm{BC}
$$

Let us use Pythagoras theorem.
In $\triangle A B D ; \quad A D^{2}=A B^{2}+\mathrm{BD}^{2}$

$$
\begin{aligned}
=A B^{2}+\frac{1}{9} & B C^{2} \\
& {\left[\because B D=\frac{1}{3} B C\right] }
\end{aligned}
$$

$$
\begin{equation*}
\Rightarrow \quad 5 \mathrm{AD}^{2}=5 \mathrm{AB}^{2}+\frac{5}{9} \mathrm{BC}^{2} \tag{i}
\end{equation*}
$$

Also in $\triangle \mathrm{ABE} ; \mathrm{AE}^{2}=\mathrm{AB}^{2}+\mathrm{BE}^{2}$

$$
\begin{align*}
& =A B^{2}+\left(\frac{2}{3} B C\right)^{2} \\
& =A B^{2}+\frac{4}{9} B C^{2} \\
\Rightarrow \quad 8 E^{2} & =8 \mathrm{AB}^{2}+\frac{32}{9} \mathrm{BC}^{2} \tag{ii}
\end{align*}
$$

In $\triangle \mathrm{ABC} ; \quad \mathrm{AC}^{2}=\mathrm{AB}^{2}+\mathrm{BC}^{2}$
$\Rightarrow \quad 3 A C^{2}=3 A B^{2}+3 B C^{2}$
Adding equations (i) and (iii), and then subtracting the result from equation (ii), we get $8 A E^{2}-\left(5 A D^{2}+3 A C^{2}\right)$
$=8 \mathrm{AB}^{2}+\frac{32}{9} \mathrm{BC}^{2}-\left(5 \mathrm{AB}^{2}+\frac{5}{9} \mathrm{BC}^{2}\right.$
$\left.+3 A B^{2}+3 \mathrm{BC}^{2}\right)$
$=8 \mathrm{AB}^{2}-8 \mathrm{AB}^{2}+\frac{32}{9} \mathrm{BC}^{2}-\frac{32}{9} \mathrm{BC}^{2}=0$
$\Rightarrow \quad 8 \mathrm{AE}^{2}=3 \mathrm{AC}^{2}+5 \mathrm{AD}^{2}$.

OR

Let $\mathrm{AB}=\mathrm{BC}=\mathrm{AC}=a$
Draw $A E \perp B C$
$\Rightarrow \quad \mathrm{BE}=\mathrm{EC}=\frac{1}{2} a$

and $\mathrm{BD}=\frac{1}{3} \mathrm{BC}=\frac{1}{3} a$.
Using Pythagoras theorem in $\triangle \mathrm{ACE}$, we have $\mathrm{AC}^{2}=\mathrm{AE}^{2}+\mathrm{EC}^{2}$
Similarly, in $\triangle \mathrm{ADE}$, we have $\mathrm{AD}^{2}=\mathrm{AE}^{2}+$ $\mathrm{DE}^{2}=\mathrm{AE}^{2}+(\mathrm{BE}-\mathrm{BD})^{2}$

$$
\begin{aligned}
& \mathrm{AD}^{2}=\mathrm{AE}^{2}+\mathrm{BE}^{2}+\mathrm{BD}^{2}-2 \mathrm{BE} \cdot \mathrm{BD} \\
& \Rightarrow \quad \mathrm{AD}^{2}=\mathrm{AE}^{2}+\mathrm{EC}^{2}+\left(\frac{1}{3} a\right)^{2}-2\left(\frac{1}{2} a\right)\left(\frac{1}{3} a\right)
\end{aligned}
$$

[By (ii) and (iii)]

$$
\begin{align*}
& =\mathrm{AC}^{2}+\frac{a^{2}}{9}-\frac{a^{2}}{3} \tag{iv}\\
& =a^{2}+\frac{a^{2}}{9}-\frac{a^{2}}{3}=\frac{7 a^{2}}{9} \tag{i}
\end{align*}
$$

$$
9 \mathrm{AD}^{2}=7 \mathrm{AB}^{2}
$$

19

Let coordinates of P are (x, y)
$\therefore \quad$ Using section formula:

As P lies on $x+y=0$

$$
x=\frac{-4 k+3}{k+1} ; y=\frac{8 k-5}{k+1}
$$

$\Rightarrow \frac{-4 k+3}{k+1}+\frac{8 k-5}{k+1}=0$
$\Rightarrow \quad 4 k-2=0 \Rightarrow k=\frac{2}{4}=\frac{1}{2}$.
OR
Let the height of parallelogram taking AB as base be h.

Now,

$$
\begin{aligned}
\mathrm{AB} & =\sqrt{(7-4)^{2}+(2+2)^{2}} \\
& =\sqrt{3^{2}+4^{2}}=5 \text { units }
\end{aligned}
$$

$$
\text { Area of } \Delta \mathrm{ABC}=\frac{1}{2}[4(2-9)+7(9+2)
$$

$$
+0(-2-2)]
$$

$=\frac{49}{2}$ sq. units
Now, $\frac{1}{2} \times \mathrm{AB} \times h=\frac{49}{2}$
$\Rightarrow \quad \frac{1}{2} \times 5 \times h=\frac{49}{2}$
$\Rightarrow \quad h=\frac{49}{5}=9.8$ units
20. In the given distribution, the classes are in the inclusive form. Let us convert them into exclusive form by subtracting $\frac{163-162}{2}$,i.e.,
0.5 from lower limit and adding the same to upper limit of each class.

Class interval	f
$159.5-162.5$	15
$162.5-165.5$	118
$165.5-168.5$	142
$168.5-171.5$	127
$171.5-174.5$	18

Here, the maximum frequency is 142.

$$
\therefore l=165.5, f_{1}=142, f_{0}=118, f_{2}=127, h=3
$$

Now, mode $=l+\left(\frac{f_{1}-f_{0}}{2 f_{1}-f_{0}-f_{2}}\right) \times h$

$$
\begin{aligned}
& =165.5+\left(\frac{142-118}{284-118-127}\right) \times 3 \\
& =165.5+1.85=167.35
\end{aligned}
$$

Hence, the modal height of the students is 167.35 cm .
21. Draw $\triangle \mathrm{ABC}$ with
$\mathrm{AB}=\mathrm{BC}=\mathrm{AC}=a$ (say) [i.e., equilateral $\Delta]$ Draw AD $\perp \mathrm{BC}$

$\therefore \angle \mathrm{BAD}=\angle \mathrm{DAC}=\theta=30^{\circ} \quad\left[\because \angle \mathrm{A}=60^{\circ}\right]$ and $\mathrm{BD}=\mathrm{DC}=a / 2$
$\therefore \quad \sin \theta=\frac{\mathrm{BD}}{\mathrm{AB}}=\frac{a / 2}{a}=\frac{1}{2} \Rightarrow \sin 30^{\circ}=\frac{1}{2}$.
OR

$$
\sin \theta+\cos \theta=\sqrt{2}
$$

Squaring both sides,

$$
\begin{align*}
& (\sin \theta+\cos \theta)^{2}=(\sqrt{2})^{2} \\
\Rightarrow & \sin ^{2} \theta+\cos ^{2} \theta+2 \sin \theta \cdot \cos =2 \\
\Rightarrow \quad & 1+2 \sin \theta \cdot \cos \theta=2\left(\because \sin ^{2} \theta+\cos ^{2} \theta=1\right) \\
\Rightarrow \quad & 2 \sin \theta \cdot \cos \theta=1 \\
\Rightarrow \quad & \quad \sin \theta \cdot \cos \theta=\frac{1}{2} \quad \ldots(i) \tag{i}
\end{align*}
$$

We know that,

$$
\begin{equation*}
\sin ^{2} \theta+\cos ^{2} \theta=1 \tag{ii}
\end{equation*}
$$

Dividing (ii) by (i), we get

$$
\begin{aligned}
& \frac{\sin ^{2} \theta+\cos ^{2} \theta}{\sin \theta \cdot \cos \theta}=\frac{1}{\frac{1}{2}} \Rightarrow \tan \theta+\cot \theta=2 . \\
& +\sin \theta
\end{aligned}
$$

22. $\frac{\tan \theta+\sin \theta}{\tan \theta-\sin \theta}$

$$
\begin{gathered}
=\frac{\sec \theta+1}{\sec \theta-1}=\frac{1+\cos \theta}{1-\cos \theta}=\frac{\tan ^{2} \theta}{(\sec \theta-1)^{2}} \\
\text { I II } \\
\text { LHS }=\frac{\tan \theta+\sin \theta}{\tan \theta-\sin \theta}=\frac{\frac{\sin \theta}{\cos \theta}+\sin \theta}{\frac{\sin \theta}{\cos \theta}-\sin \theta} \\
\quad=\frac{\sin \theta+\sin \theta \cos \theta}{\sin \theta-\sin \theta \cos \theta}
\end{gathered}
$$

Dividing numerator and denominator by $\sin \theta \cdot \cos \theta$, we get

$$
\begin{aligned}
\text { LHS } & =\frac{\frac{\sin \theta}{\sin \theta \cos \theta}+\frac{\sin \theta \cos \theta}{\sin \theta \cos \theta}}{\frac{\sin \theta}{\sin \theta \cos \theta}-\frac{\sin \theta \cos \theta}{\sin \theta \cos \theta}} \\
& =\frac{\frac{1}{\cos \theta}+1}{\frac{1}{\cos \theta}-1}=\frac{\sec \theta+1}{\sec \theta-1}=\text { (1st Result) }
\end{aligned}
$$

Again, $\frac{\sec \theta+1}{\sec \theta-1}$

$$
=\frac{\frac{1}{\cos \theta}+1}{\frac{1}{\cos \theta}-1}=\frac{1+\cos \theta}{1-\cos \theta}=(\text { IInd Result })
$$

For IIIrd Result consider 1st Result, i.e., LHS
$=\frac{\sec \theta+1}{\sec \theta-1}$
Multiplying numerator and denominator by $(\sec \theta-1)$, we get

$$
\begin{aligned}
& =\frac{(\sec \theta+1)(\sec \theta-1)}{(\sec \theta-1)(\sec \theta-1)}=\frac{\sec ^{2} \theta-1}{(\sec \theta-1)^{2}} \\
& =\frac{\tan ^{2} \theta}{(\sec \theta-1)^{2}} . \quad\left(\because \sec ^{2} \theta-1=\tan ^{2} \theta\right)
\end{aligned}
$$

Section-D

23. Table for values of x and y corresponding to equation $4 x-5 y-20=0$ is

x	5	0
y	0	-4

Similarly for the equation $3 x+5 y-15=0$

x	5	0
y	0	3

Let us draw the graphs for the two equations. As the graphs of the two lines intersect each other at the point $A(5,0)$, the required solution is $x=5, y=0$.

The graphs intersect the y-axis at $B(0,3)$ and $C(0,-4)$. Therefore, the coordinates of vertices of the triangle ABC are $\mathrm{A}(5,0), \mathrm{B}(0,3)$ and $C(0,-4)$.
Hence the answer: $x=5, y=0$ and $(5,0)$, $(0,3),(0,-4)$.
24. Let present Nisha's age $=x$ years
\therefore Present age of Asha's age $x^{2}+2$
When Nisha's age $=x^{2}+2$
then \quad Asha's age $=10 x-1$
According to question, we have

$$
\begin{array}{rlrl}
\therefore & x^{2}+2+\left[x^{2}+2-x\right] & =10 x-1 \\
\Rightarrow & 2 x^{2}-x+4 & =10 x-1 \\
\Rightarrow & 2 x^{2}-11 x+5 & =0 \\
\Rightarrow & & 2 x^{2}-10 x-x+5 & =0 \\
\Rightarrow & & 2 x(x-5)-1(x-5) & =0 \\
\Rightarrow & & (2 x-1)(x-5) & =0
\end{array}
$$

Hence, Nisha's present age $=5$ years
and Asha's present age $=(5)^{2}+2$

$$
=27 \text { years. }
$$

25. $\because P Q$ and $P R$ are two tangents of the same circle at point Q and R.
\therefore PQOR is a cyclic quadrilateral.
$\angle \mathrm{QPR}+\angle \mathrm{QOR}=180^{\circ}$
[Opposite of cyclic quadrilateral]

$$
\angle \mathrm{QOR}=180^{\circ}-\angle \mathrm{QPR}
$$

$$
\begin{equation*}
\angle \mathrm{QPR}=80^{\circ}-\angle \mathrm{QOR} \tag{i}
\end{equation*}
$$

In $\triangle O Q R, \quad O Q=O R$
[Radii of the same circle]
$\angle \mathrm{OQR}=\angle \mathrm{ORQ}$
[Opposite angles of equal side]
$\angle \mathrm{OQR}+\angle \mathrm{ORQ}+\angle \mathrm{QOR}=180^{\circ}$
[Angle sum property of triangle]
$\angle \mathrm{OQR}+\angle \mathrm{OQR}+\angle \mathrm{QOR}=180^{\circ}$
$2 \angle \mathrm{OQR}=180^{\circ}-\angle \mathrm{QOR}$
$\angle \mathrm{OQR}=\frac{1}{2}\left(180^{\circ}-\angle \mathrm{QOR}\right)$

$$
=\frac{1}{2} \angle \mathrm{QPR}
$$

[From (i), $\left.\angle \mathrm{QPR}=180^{\circ}-\angle \mathrm{QOR}\right]$
$\therefore \quad \angle \mathrm{QPR}=2 \angle \mathrm{OQR}$.
Hence proved.
26. Let the given similar triangles be ABC and PQR with medians AD and PM respectively as shown in the figure.

MATHEMATTICSEX

$$
\begin{array}{ll}
\therefore & \Delta \mathrm{ABC} \sim \Delta \mathrm{PQR} \\
\Rightarrow & \frac{\mathrm{AB}}{\mathrm{PQ}}=\frac{\mathrm{BC}}{\mathrm{QR}} \tag{i}
\end{array}
$$

and $\quad \angle \mathrm{B}=\angle \mathrm{Q}$
We need to prove

$$
\frac{\operatorname{ar}(\triangle \mathrm{ABC})}{\operatorname{ar}(\triangle \mathrm{PQR})}=\frac{\mathrm{AD}^{2}}{\mathrm{PM}^{2}}
$$

Draw $\mathrm{AE} \perp \mathrm{BC}$ and $\mathrm{PN} \perp \mathrm{QR}, \frac{\mathrm{AB}}{\mathrm{PQ}}=\frac{\mathrm{BC}}{\mathrm{QR}}$
[By (i)]

$$
\begin{equation*}
\Rightarrow \quad \frac{\mathrm{AB}}{\mathrm{PQ}}=\frac{\frac{1}{2} \mathrm{BC}}{\frac{1}{2} \mathrm{QR}} \Rightarrow \frac{\mathrm{AB}}{\mathrm{PQ}}=\frac{\mathrm{BD}}{\mathrm{QM}} . \tag{iii}
\end{equation*}
$$

In $\triangle \mathrm{ABD}$ and $\triangle \mathrm{PQM}, \angle \mathrm{B}=\angle \mathrm{Q}$
[By (ii)]

$$
\begin{array}{rlrl}
& & \frac{\mathrm{AB}}{\mathrm{PQ}} & =\frac{\mathrm{BD}}{\mathrm{QM}} \\
& \therefore & \Delta \mathrm{ABD} & \sim \Delta \mathrm{PQM} \\
\Rightarrow & \frac{\mathrm{AB}}{\mathrm{PQ}} & =\frac{\mathrm{AD}}{\mathrm{PM}} \Rightarrow \frac{\mathrm{BC}}{\mathrm{QR}}=\frac{\mathrm{AD}}{\mathrm{PM}} \ldots(\mathrm{SAS} \text { similarity) } \tag{iv}
\end{array}
$$

[By (i)]
In $\triangle \mathrm{ABE}$ and $\triangle \mathrm{PQN}$,

$$
\text { Now, } \frac{\operatorname{ar}(\triangle \mathrm{ABC})}{\operatorname{ar}(\triangle \mathrm{PQR})}=\frac{\frac{1}{2} \times \mathrm{BC} \times \mathrm{AE}}{\frac{1}{2} \times \mathrm{QR} \times \mathrm{PN}}
$$

$$
=\left(\frac{\mathrm{BC}}{\mathrm{QR}}\right) \times\left(\frac{\mathrm{AE}}{\mathrm{PN}}\right)
$$

$$
=\frac{\mathrm{AD}}{\mathrm{PM}} \times \frac{\mathrm{AD}}{\mathrm{PM}}
$$

[Using (iv) and (v)]

$$
\frac{\operatorname{ar}(\triangle \mathrm{ABC})}{\operatorname{ar}(\triangle \mathrm{PQR})}=\frac{\mathrm{AD}^{2}}{\mathrm{PM}^{2}}
$$

$$
\begin{aligned}
& \angle B=\angle Q \\
& \angle \mathrm{E}=\angle \mathrm{N} \\
& \therefore \quad \triangle \mathrm{ABE} \sim \triangle \mathrm{PQN} \quad \text { (AA similarity) } \\
& \Rightarrow \quad \frac{\mathrm{AB}}{\mathrm{PQ}}=\frac{\mathrm{AE}}{\mathrm{PN}} \Rightarrow \frac{\mathrm{BC}}{\mathrm{QR}}=\frac{\mathrm{AE}}{\mathrm{PN}} \quad[\mathrm{By}(i)] \\
& \Rightarrow \quad \frac{\mathrm{AE}}{\mathrm{PN}}=\frac{\mathrm{AD}}{\mathrm{PM}} \\
& \text { [By (ii)] } \\
& \text { [Each } 90^{\circ} \text {] }
\end{aligned}
$$

OR

Given: A triangle $A B C$, right angled at B. We have to prove that $A C^{2}=A B^{2}+B C^{2}$.
Construction: Draw $\mathrm{BD} \perp \mathrm{AC}$.
Proof. In triangles ADB and ABC,

$$
\begin{array}{rlrl}
\angle \mathrm{A} & =\angle \mathrm{A} & (\text { Common }) \\
\angle \mathrm{ADB} & =\angle \mathrm{ABC} & & \left(\text { Each } 90^{\circ}\right)
\end{array}
$$

\therefore
$\triangle \mathrm{ADB} \sim \triangle \mathrm{ABC}$ (By AA corollary)

$$
\therefore \frac{\mathrm{AD}}{\mathrm{AB}}=\frac{\mathrm{AB}}{\mathrm{AC}}
$$

(CorrespondingA
 sides)
$\Rightarrow \quad \mathrm{AB}^{2}=\mathrm{AD} \times \mathrm{AC}$
Similarly, $\quad \mathrm{BC}^{2}=\mathrm{DC} \times \mathrm{AC}$
Adding (i) and (ii), we get

$$
\begin{aligned}
\mathrm{AB}^{2}+\mathrm{BC}^{2} & =\mathrm{AD} \times \mathrm{AC}+\mathrm{CD} \times \mathrm{AC} \\
& =\mathrm{AC}(\mathrm{AD}+\mathrm{CD}) \\
& =\mathrm{AC} \times \mathrm{AC} \\
\Rightarrow \quad \mathrm{AB}^{2}+\mathrm{BC}^{2} & =\mathrm{AC}^{2} \quad \text { Hence Proved. }
\end{aligned}
$$

27.

\therefore Volume of frustum $=\frac{1}{3} \pi h\left(\mathrm{R}^{2}+r^{2}+\mathrm{R} r\right)$

$$
\begin{aligned}
& =\frac{1}{3} \times \frac{22}{7} \times 30\left(40^{2}+20^{2}+40 \times 20\right) \\
& =\frac{1}{3} \times \frac{22}{7} \times 30[1600+400+800] \\
& =\frac{1}{3} \times \frac{22}{7} \times 30 \times 2800 \\
& =88000 \mathrm{~cm}^{3}=88 \text { litres }
\end{aligned}
$$

\therefore Number of containers needed

$$
=\frac{\text { Total volume of milk }}{\text { Volume of container }}=\frac{880}{88}=10 .
$$

Cost of milk $=35 \times 88 \times 10=` 30800$
Value: Helping the needy.
28. $h=16 \mathrm{~cm}, r_{1}=8 \mathrm{~cm}, r_{2}=20 \mathrm{~cm}$

Capacity of container (frustum)
$=\frac{\pi h}{3}\left(r_{1}^{2}+r_{2}^{2}+r_{1} r_{2}\right)$
$=\frac{3.14 \times 16}{3}\left(8^{2}+20^{2}+8 \times 20\right)$
$=\frac{50.24}{3}(64+400+160)$
$=\frac{50.24}{3} \times 624=50.24 \times 208$
$=10449.92 \mathrm{~cm}^{3}=\frac{10449.92}{1000} l=10.44992 l$
Cost of milk $=$ Capacity in litres \times Rate per litre

$$
\begin{aligned}
& =10.44992 \times 20 \\
& =` 208.9984 \simeq ` 209 .
\end{aligned}
$$

If l be the slant height of the frustum, then

$$
\begin{aligned}
& \quad l=\sqrt{h^{2}+\left(r_{2}-r_{1}\right)^{2}}=\sqrt{16^{2}+12^{2}} \\
& =\sqrt{400}=20 \mathrm{~cm}
\end{aligned}
$$

Total surface area of the frustum
$=\pi\left(r_{1}+r_{2}\right) l+\pi r_{1}{ }^{2}$
$=3.14\left[(8+20) \times 20+8^{2}\right]$
$=3.14 \times 624=1959.36 \mathrm{~cm}^{2}$
Cost of metal sheet used
$=\frac{1959.36}{100} \times 8$
$=156.7488 \simeq ` 156.75$
Thus, cost of milk is `209 and cost of metal sheet is` 156.75 .
29. Let
$\mathrm{AB}=$ height of building
and
$C D=$ height of tower

\therefore To find: (i) Difference between heights

$$
=\quad \mathrm{CD}-\mathrm{DE} \quad[\because \mathrm{AB}=\mathrm{DE}]
$$

(ii) $\mathrm{BD}=$ Distance between bottoms

In right-angled $\triangle A B D$,

$$
\begin{array}{llrl}
& \angle \mathrm{ADB}=\angle \mathrm{EAD}=60^{\circ} \\
\therefore & \tan 60^{\circ}=\frac{\mathrm{AB}}{\mathrm{BD}} \Rightarrow \sqrt{3}=\frac{60}{\mathrm{BD}} \\
\Rightarrow & \mathrm{BD}=\frac{60}{\sqrt{3}}=\frac{60 \sqrt{3}}{3}=20 \sqrt{3} \mathrm{~m} \\
\therefore & B D=20 \sqrt{3} \mathrm{~m}
\end{array}
$$

Also as ABDE is a rectangle

$$
\therefore \quad \mathrm{AB}=\mathrm{DE}=60 \mathrm{~m}
$$

and

$$
\mathrm{BD}=\mathrm{AE}=20 \sqrt{3} \mathrm{~m}
$$

\therefore In right-angled $\triangle \mathrm{AEC}$,

$$
\begin{aligned}
& & \tan 30^{\circ} & =\frac{\mathrm{CE}}{\mathrm{AE}} \\
\Rightarrow & & \frac{1}{\sqrt{3}} & =\frac{\mathrm{CE}}{20 \sqrt{3}} \\
\Rightarrow & & \mathrm{CE} & =\frac{20 \sqrt{3}}{\sqrt{3}}=20 \mathrm{~m}
\end{aligned}
$$

\therefore Difference between heights $=C E=20 \mathrm{~m}$.

OR

In $\triangle \mathrm{BTP} \Rightarrow \tan 30^{\circ}=\frac{\mathrm{TP}}{\mathrm{BP}}$

$$
\begin{align*}
\Rightarrow \quad \frac{1}{\sqrt{3}} & =\frac{\mathrm{TP}}{\mathrm{BP}} \\
\mathrm{BP} & =\mathrm{TP} \sqrt{3} \tag{i}
\end{align*}
$$

In $\Delta \mathrm{GTR}$,

$$
\begin{align*}
\tan 60^{\circ} & =\frac{\mathrm{TR}}{\mathrm{GR}} \Rightarrow \sqrt{3}=\frac{\mathrm{TR}}{\mathrm{GR}} \\
\Rightarrow \quad \mathrm{GR} & =\frac{\mathrm{TR}}{\sqrt{3}} \tag{ii}
\end{align*}
$$

Now, \quad TP $\sqrt{3}=\frac{\mathrm{TR}}{\sqrt{3}}($ as $B P=G R)$
$\Rightarrow \quad 3 \mathrm{TP}=\mathrm{TP}+\mathrm{PR}$

$$
\Rightarrow \quad 2 \mathrm{TP}=\mathrm{BG} \Rightarrow \mathrm{TP}=\frac{50}{2} \mathrm{~m}=25 \mathrm{~m}
$$

Now,

$$
\mathrm{TR}=\mathrm{TP}+\mathrm{PR}=(25+50) \mathrm{m}
$$

Height of tower $=\mathrm{TR}=75 \mathrm{~m}$.
Distance between building and tower

$$
\begin{aligned}
& =\mathrm{GR}=\frac{\mathrm{TR}}{\sqrt{3}} \\
\Rightarrow \quad \mathrm{GR} & =\frac{75}{\sqrt{3}} \mathrm{~m}=25 \sqrt{3} \mathrm{~m}
\end{aligned}
$$

30. We note that the classes are continuous, so, we proceed for making cumulative frequency table.

Marks (C.I.)	Number of Students (f)	c.f.
$0-10$	5	5
$10-20$	f_{1}	$5+f_{1}$
$20-30$	15	$20+f_{1}$
$30-40$	f_{2}	$20+f_{1}+f_{2}$
$40-50$	6	$26+f_{1}+f_{2}$
	50	

As median is given to be 28, therefore, median class is (20-30), marked with arrow (\leftarrow).
Here, $l=20, c=5+f_{1}, h=10, \mathrm{~N}=50, f=15$
Using the formula for median, we get

$$
\begin{array}{rlrl}
& & \text { Median } & =l+\frac{\frac{\mathrm{N}}{2}-c}{f} \times h \\
\Rightarrow & 28 & =20+\frac{25-\left(5+f_{1}\right)}{15} \times 10 \\
\Rightarrow & 8 & =\frac{\left(25-5-f_{1}\right) 2}{3} \\
\Rightarrow & 12 & =20-f_{1} \Rightarrow f_{1}=8 .
\end{array}
$$

Also, $26+f_{1}+f_{2}=50 \Rightarrow f_{1}+f_{2}=24$.
Substituting for $f_{1}=8$, we get

$$
f_{2}=24-8=16
$$

Therefore, $\quad f_{1}=8, f_{2}=16$.

OR

\begin{tabular}{|c|c|c|c|c|}

\hline \begin{tabular}{c}
Daily pocket

allowance (in `)

 \&

Number of chil-

dren $\left(f_{1}\right)$
\end{tabular} \& Mid-point $\left(x_{i}\right)$ \& $u_{i}=\frac{x_{i}-18}{2}$ \& $f_{i} u_{i}$

\hline $11-13$ \& 3 \& 12 \& -3 \& -9

\hline $13-15$ \& 6 \& 14 \& -2 \& -12

\hline $15-17$ \& 9 \& 16 \& -1 \& -9

\hline $17-19$ \& 13 \& 18 \& 0 \& 0

\hline $19-21$ \& k \& 20 \& 1 \& k

\hline $21-23$ \& 5 \& 22 \& 2 \& 10

\hline $23-25$ \& 4 \& 24 \& 3 \& 12

\hline \& $\Sigma f_{i}=40+k$ \& \& \& $\Sigma f_{i} u_{i}=k-8$

\hline
\end{tabular}

Mean $=\bar{x}=a+h\left(\frac{\Sigma f_{i} u_{i}}{\Sigma f_{i}}\right) \Rightarrow 18=18+2\left(\frac{k-8}{40+k}\right) \Rightarrow k=8$.

Practice Paper-2

Section-A

1. Rational number $=0.27$

Irrational number $=0.26010010001 \ldots$.
2. Sum of zeroes $=-\frac{-3 \sqrt{2}}{3}=\sqrt{2}$
and product of zeroes $=\frac{1}{3}$.
3. Any point on y-axis be $(0, y)$

$$
\begin{aligned}
& \therefore \sqrt{(6)^{2}+(5-y)^{2}}=\sqrt{(0+4)^{2}+(3-y)^{2}} \\
& \Rightarrow \quad y=9 \therefore \text { Point is }(0,9) .
\end{aligned}
$$

4. $\angle \mathrm{BAT}=\angle \mathrm{ACB}=55^{\circ}$.
5. The modal class is $125-145$ as the largest frequency is 20.
Required difference $=145-125=20$.
6.

$$
n(s)=52
$$

Let E be the event (a red face card)

$$
\therefore \quad n(\mathrm{E})=6 \therefore p(\mathrm{E})=\frac{6}{52}=\frac{3}{26} \text {. }
$$

Section-B

7. (i) $\frac{12027}{2^{2} \times 5^{3}}=\frac{12027 \times 2}{2^{3} \times 5^{3}}=\frac{24054}{1000}=24.054$.
(ii) $\frac{37}{2^{2} \times 5}=\frac{37 \times 2 \times 25}{2^{3} \times 5^{3}}=\frac{1850}{1000}=1.850$.
8. \because The numbers $x-2,4 x-1$ and $5 x+2$ are in AP.

$$
\begin{array}{lrl}
\therefore & 4 x-1-(x-2)=5 x+2-(4 x-1) \\
& {[\because \text { Common difference in AP is same }]} \\
\Rightarrow & 4 x-1-x+2=5 x+2-4 x+1 \\
\Rightarrow & 3 x+1=x+3 \\
\Rightarrow & 3 x-x=3-1 \Rightarrow 2 x=2 \\
\Rightarrow & x & x .
\end{array}
$$

9. Let $\mathrm{A}(8,1), \mathrm{B}(3,-2 k)$ and $\mathrm{C}(k,-5)$ are collinear.

$$
\begin{array}{cc}
\Rightarrow & \text { Area } \Delta \mathrm{ABC}=0 \\
\Rightarrow & \mid x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right) \\
& +x_{3}\left(y_{1}-y_{2}\right) \mid=0 \\
\Rightarrow & \mid 8(-2 k+5)+3(-5-1) \\
& +k(1+2 k) \mid=0 \\
\Rightarrow & \left|-16 k+40-18+k+2 k^{2}\right|=0 \\
\Rightarrow & \left|2 k^{2}-15 k+22\right|=0
\end{array}
$$

$$
\begin{array}{lr}
\Rightarrow & 2 k^{2}-15 k+22=0 \\
\Rightarrow & 2 k^{2}-11 k-4 k+22=0 \\
\Rightarrow & k(2 k-11)-2(2 k-11)=0 \\
\Rightarrow & (k-2)(2 k-11)=0 \\
\Rightarrow & k-2=0 \text { or } 2 k-11=0 \\
\Rightarrow & k=2 \text { or } k=\frac{11}{2} .
\end{array}
$$

10. $\operatorname{Sec} \theta+\tan \theta=\frac{1}{\cos \theta}+\frac{\sin \theta}{\cos \theta}=\frac{(1+\sin \theta)}{\cos \theta}$

$$
\begin{aligned}
& =\frac{1+\sin \theta}{\sqrt{1-\sin ^{2} \theta}}=\frac{1+\frac{a}{b}}{\sqrt{1-\frac{a^{2}}{b^{2}}}} \\
& =\frac{b+a}{\sqrt{b^{2}-a^{2}}}=\frac{b+a}{\sqrt{b+a} \sqrt{b-a}} \\
& =\sqrt{\frac{b+a}{b-a}} .
\end{aligned}
$$

11. Length of arc $=20 \mathrm{~cm}$ (Given) and angle $(\theta)=60^{\circ}$
Let the radius $=r \mathrm{~cm}$
We know that,

$$
\begin{aligned}
\text { Length of arc } & =\frac{\theta}{360^{\circ}} \times 2 \pi r \\
20 & =\frac{60}{360^{\circ}} \times 2 \pi r \\
r & =\frac{60}{\pi} \mathrm{~cm}
\end{aligned}
$$

Area of corresponding sector $=\pi r^{2} \times \frac{\theta}{360^{\circ}}$

$$
\begin{aligned}
& =\pi \times \frac{60 \times 60}{\pi^{2}} \times \frac{60}{360^{\circ}} \\
& =\frac{600}{\pi} \mathrm{~cm}^{2} .
\end{aligned}
$$

12. Sample space: $\{1,2,3$, , 99$\}$
$\therefore \quad n(\mathrm{~S})=99$.
The numbers divisible by 3 and 5 both are numbers divisible by 15 .
So, favourable outcomes are: $\{15,30,45,60$, $75,90\}$
Let E be the event getting a number divisible by 3 and 5 .

$$
\begin{array}{ll}
\therefore & n(\mathrm{E})=6 \\
\therefore & \mathrm{P}(\mathrm{E})=\frac{n(\mathrm{E})}{n(\mathrm{~S})}=\frac{6}{99}=\frac{2}{33} .
\end{array}
$$

Section-C

13. Let us assume, to the contrary that $\sqrt{3}$ is rational. We can take integers a and b such that
$\sqrt{3}=\frac{a}{b}$, where a and b are coprime.

$$
\begin{array}{ll}
\Rightarrow & 3 b^{2}=a^{2} \\
\Rightarrow & a^{2} \text { is divisible by } 3 \\
\Rightarrow & a \text { is divisible by } 3 \tag{i}
\end{array}
$$

We can write $a=3 c$ for some integer c

$$
\begin{array}{ll}
\Rightarrow & a^{2}=9 c^{2} \\
\Rightarrow & 3 b^{2}=9 c^{2} \quad\left(\because a^{2}=3 b^{2}\right) \\
\Rightarrow & b^{2}=3 c^{2} \\
\Rightarrow & b^{2} \text { is divisible by } 3 \\
\Rightarrow & b \text { is divisible by } 3 \ldots(i i) \tag{ii}
\end{array}
$$

From (i) and (ii), we observe that a and b have atleast 3 as a common factor. But this contradicts the fact that a and b are co-prime. This means that our assumption is not correct.
Hence, $\sqrt{3}$ is an irrational number.
OR
Let us assume, to the contrary, that $3+2 \sqrt{5}$ is rational.
So we can find coprimes a and b such that

$$
3+2 \sqrt{5}=\frac{a}{b}
$$

Rearranging, $\quad \sqrt{5}=\frac{a-3 b}{2 b}$
a and b are integers $\Rightarrow a-3 b$ is an integer $\Rightarrow \frac{a-3 b}{2 b}$ is rational number
$\therefore \sqrt{5}$ should be rational. But we know that $\sqrt{5}$ is irrational. So our assumption that $3+$ $2 \sqrt{5}$ is rational is wrong.
Hence $3+2 \sqrt{2}$ is irrational.
14. Since $x=\sqrt{\frac{5}{3}}$ and $x=-\sqrt{\frac{5}{3}}$ are zeroes of $p(x)$
$=3 x^{4}+6 x^{3}-2 x^{2}-10 x-5$, so $p(x)$ is divisible by $\left(x-\sqrt{\frac{5}{3}}\right)\left(x+\sqrt{\frac{5}{3}}\right)$,i.e., $x^{2}-\frac{5}{3}$.

$$
\begin{array}{r}
x^{2}-\frac{5}{3} \begin{array}{r}
3 x^{2}+6 x+3 \\
\frac{3 x^{4}+6 x^{3}-2 x^{2}-10 x-5}{3 x^{4} \quad-5 x^{2}} \\
\hline \begin{array}{r}
6 x^{3}+3 x^{2}-10 x-5 \\
-6 x^{3} \quad-10 x
\end{array} \\
\hline \begin{array}{l}
3 x^{2} \\
-3 x^{2} \\
-5 \\
\hline
\end{array} \\
\hline
\end{array} \\
\hline
\end{array}
$$

Here, other two zeroes of $p(x)$ are the two zeroes of quotient $3 x^{2}+6 x+3$
Put $\quad 3 x^{2}+6 x+3=0$
$\Rightarrow \quad 3(x+1)^{2}=0$
$\Rightarrow \quad x=-1$ and $x=-1$
Hence, all the zeroes of $p(x)$ are $\sqrt{\frac{5}{3}},-\sqrt{\frac{5}{3}}$, -1 and -1 .
15. Let

Let	$a=$ first term
	$d=$ common difference
\therefore	$a_{n}=a+(n-1) d$
\therefore	$a_{17}=a+16 d$
	$a_{8}=a+7 d$
	$a_{11}=a+10 d$
Now	$a_{17}=2 \cdot a_{8}+5$
\Rightarrow	$a+16 d=2(a+7 d)+5$
	$=2 a+14 d+5$
\Rightarrow	$2 d=a+5$
\Rightarrow	$a=2 d-5 \quad \ldots(i)$
Also as	$a_{11}=43$
\Rightarrow	$a+10 d=43$
Using (i), $2 d-$	$5+10 d=43$
\Rightarrow	$12 d=48$
	$d=4$
\therefore from $(i) \Rightarrow$	$a=2 \times 4-5=3$
\therefore	$a_{n}=a+(n-1) . d$
\Rightarrow	$a_{n}=3+(n-1) .4$

$$
\begin{aligned}
& =3+4 n-4 \\
a_{n} & =4 n-1
\end{aligned}
$$

OR

Integers between 100 and 200 divisible by 9 are $108,117,126, \ldots, 198$ which forms an AP with,

$$
a=108, d=117-108=9
$$

nth term in AP,

$$
\begin{aligned}
a_{n} & =a+(n-1) d \\
198 & =108+(n-1) d \\
198-108 & =(n-1) \times 9
\end{aligned}
$$

$$
\frac{90}{9}=n-1 \Rightarrow n=10+1=11
$$

Sum of nth term in AP,

$$
\begin{aligned}
\mathrm{S}_{n} & =\frac{n}{2}(a+l)=\frac{11}{2}(108+198) \\
& =\frac{11}{2} \times 306=11 \times 153=1683 .
\end{aligned}
$$

16. For infinite number of solutions, we have

$$
\frac{2}{p+q}=\frac{-3}{-(p+q-3)}=\frac{-7}{-(4 p+q)}
$$

Consider, $\frac{2}{p+q}=\frac{-3}{-(p+q-3)}$
$\Rightarrow \quad p+q=6$
and $\frac{-3}{-(p+q-3)}=\frac{-7}{-(4 p+q)}$,
$\Rightarrow \quad 5 p-4 q=-21$
Solving (i) and (ii) we get;

$$
p=-5, q=-1 .
$$

17. Let the line $2 x+3 y-5=0$ divides the line segment joining the points $(8,-9)$ and $(2,1)$ in the ratio $k: 1$.

By using formula

$$
\begin{aligned}
& \left(\frac{m x_{2}+n x_{1}}{m+n}, \frac{m y_{2}+n y_{1}}{m+n}\right) \text {, then } \\
& \therefore \quad \mathrm{P}\left(\frac{2 \mathrm{k}+8}{\mathrm{k}+1}, \frac{\mathrm{k}-9}{\mathrm{k}+1}\right)=\mathrm{P}(\mathrm{x}, \mathrm{y})
\end{aligned}
$$

Thus, $x=\frac{2 k+8}{k+1}$ and $y=\frac{k-9}{k+1}$
Point $\mathrm{P}(\mathrm{x}, \mathrm{y})$ lies on the given line.

$$
\begin{array}{rr}
\therefore & 2\left(\frac{2 \mathrm{k}+8}{\mathrm{k}+1}\right)+3\left(\frac{\mathrm{k}-9}{\mathrm{k}+1}\right)-5=0 \\
\Rightarrow & 4 \mathrm{k}+16+3 \mathrm{k}-27-5 \mathrm{k}-5=0 \\
\Rightarrow & 2 \mathrm{k}=16 \Rightarrow \mathrm{k}=8
\end{array}
$$

Hence, the required ratio is $8: 1$.
Point of division is given as

$$
\mathrm{P}\left(\frac{2(8)+8}{8+1}, \frac{8-9}{8+1}\right) \text { i.e., } \mathrm{P}\left(\frac{8}{3}, \frac{-1}{9}\right) .
$$

OR

Let x-axis divides the line segment joining $(-4,-6)$ and $(-1,7)$ at the point P in the ratio $1: k$.
Now, coordinates of point of division

$$
=\mathrm{P}\left(\frac{-1-4 k}{k+1}, \frac{7-6 k}{k+1}\right)
$$

Since P lies on x-axis, therefore $\frac{7-6 k}{k+1}=0$
$\Rightarrow \quad 7-6 k=0 \Rightarrow k=\frac{7}{6}$
Hence the ratio is $1: \frac{7}{6}=6: 7$
Now, the coordinate of p are $\left(\frac{-34}{13}, 0\right)$.
18. Given: $\triangle A B C$, in which $A D \perp B C$ and $B D$

$$
=\frac{1}{3} \mathrm{CD} .
$$

To Prove: $\quad 2 \mathrm{CA}^{2}=2 \mathrm{AB}^{2}+\mathrm{BC}^{2}$.
Proof: $\quad \because \mathrm{BD}=\frac{1}{3} \mathrm{CD} \therefore \frac{\mathrm{BD}}{\mathrm{CD}}=\frac{1}{3}$
Let $\quad \mathrm{BD}=x$ then $\mathrm{CD}=3 x$
$\Rightarrow \quad \mathrm{BC}=x+3 x=4 x$.
In right-angled $\triangle A B D$, by Pythagoras theorem

$$
\begin{align*}
& \mathrm{AB}^{2}=\mathrm{AD}^{2}+\mathrm{BD}^{2} \\
& \mathrm{AD}^{2}=\mathrm{AB}^{2}-\mathrm{BD}^{2} \tag{i}
\end{align*}
$$

Similarly, in right-angled $\triangle A C D$,

$$
\begin{align*}
& \mathrm{AC}^{2}=\mathrm{AD}^{2}+\mathrm{DC}^{2} \\
& \mathrm{AD}^{2}=\mathrm{AC}^{2}-\mathrm{DC}^{2} \tag{ii}
\end{align*}
$$

Equating the value of AD^{2} from equations (i) and (ii), we get

$$
\begin{gathered}
A B^{2}-\mathrm{BD}^{2}=A C^{2}-\mathrm{DC}^{2} \\
A B^{2}-\mathrm{BD}^{2}+\mathrm{DC}^{2}=A C^{2} \\
\mathrm{AC}^{2}=A \mathrm{AB}^{2}-\left(\frac{1}{4} \mathrm{BC}\right)^{2}+\left(\frac{3}{4} \mathrm{BC}\right)^{2} \\
{\left[\because \mathrm{BD}=\frac{1}{4} \mathrm{BC} \text { and } \mathrm{DC}=\frac{3}{4} \mathrm{BC}\right]} \\
=A B^{2}-\frac{\mathrm{BC}^{2}}{16}+\frac{9 \mathrm{BC}^{2}}{16} \\
=\frac{16 \mathrm{AB}^{2}-\mathrm{BC}^{2}+9 \mathrm{BC}^{2}}{16}=\frac{16 \mathrm{AB}^{2}+8 \mathrm{BC}^{2}}{16}
\end{gathered}
$$

$\therefore \mathrm{AC}^{2}=\frac{8\left(2 \mathrm{AB}^{2}+\mathrm{BC}^{2}\right)}{16} \Rightarrow \mathrm{AC}^{2}=\frac{2 \mathrm{AB}^{2}+\mathrm{BC}^{2}}{2}$
$2 \mathrm{AC}^{2}=2 \mathrm{AB}^{2}+\mathrm{BC}^{2}$.
Hence proved.
19. $\mathrm{PT}, \mathrm{PT}^{\prime}$ and $\mathrm{QR}, \mathrm{QR}^{\prime}$ are required tangents.

20.

C.I.	Frequency $\left(f_{i}\right)$	Mid value $\left(x_{i}\right)$	$u_{i}=\frac{x-a}{h}$	$f_{i} u_{i}$
$0-10$	7	5	-2	-14
$10-20$	12	15	-1	-12
$20-30$	13	25	0	0
$30-40$	10	35	1	10
$40-50$	8	45	2	16
	$\Sigma f_{i}=50$			$\Sigma f_{i} u_{i}=-26+26=0$

Let assumed mean $a=25 ; h=10$

$$
\begin{aligned}
\text { Mean } \bar{x} & =a+\frac{\sum f_{i} u_{i}}{\sum f_{i}} \times h \\
& =25+\frac{0}{50} \times 10
\end{aligned}
$$

$$
\Rightarrow \quad \text { Mean } \bar{x}=25 .
$$

21. Given expression $=\frac{2 \sin 68^{\circ}}{\cos 22^{\circ}}-\frac{2 \cot 15^{\circ}}{5 \tan 75^{\circ}}$

$$
\begin{aligned}
& -\frac{3 \tan 45^{\circ} \tan 20^{\circ} \tan 40^{\circ} \tan 50^{\circ} \tan 70^{\circ}}{5} \\
= & \frac{2 \sin \left(90^{\circ}-22^{\circ}\right)}{\cos 22^{\circ}}-\frac{2 \cot \left(90^{\circ}-75^{\circ}\right)}{5 \tan 75^{\circ}}
\end{aligned}
$$

$$
3 \times 1 \times \tan \left(90^{\circ}-70^{\circ}\right) \tan \left(90^{\circ}-50^{\circ}\right)
$$

$$
-\frac{\tan 50^{\circ} \tan 70^{\circ}}{5}
$$

$3 \cot 70^{\circ} \cot 50^{\circ}$
$=\frac{2 \cos 22^{\circ}}{\cos 22^{\circ}}-\frac{2 \tan 75^{\circ}}{5 \tan 75^{\circ}}-\frac{\tan 50^{\circ} \tan 70^{\circ}}{5}$

$$
\begin{aligned}
& =2-\frac{2}{5}-\frac{3 \times \frac{1}{\tan 70^{\circ}} \times \frac{1}{\tan 50^{\circ}} \tan 50^{\circ} \tan 70^{\circ}}{5} \\
& =2-\frac{2}{5}-\frac{3}{5}=\frac{10-2-3}{5} \\
& =\frac{5}{5}=1 .
\end{aligned}
$$

OR

$$
\frac{\operatorname{cosec}^{2} 63^{\circ}+\tan ^{2} 24^{\circ}}{\cot ^{2} 66^{\circ}+\sec ^{2} 27^{\circ}}
$$

$$
+\frac{\sin ^{2} 63^{\circ}+\cos 63^{\circ} \sin 27^{\circ}+\sin 27^{\circ} \sec 63^{\circ}}{2\left(\operatorname{cosec}^{2} 65^{\circ}-\tan ^{2} 25^{\circ}\right)}
$$

$$
=\frac{\operatorname{cosec}^{2} 63^{\circ}+\tan ^{2} 24^{\circ}}{\tan ^{2}\left(90^{\circ}-66^{\circ}\right)+\operatorname{cosec}^{2}\left(90^{\circ}-27^{\circ}\right)}
$$

$$
\sin ^{2} 63^{\circ}+\cos 63^{\circ} \cos \left(90^{\circ}-27^{\circ}\right)
$$

$$
+\frac{+\sin 27^{\circ} \operatorname{cosec}\left(90^{\circ}-63^{\circ}\right)}{2\left[\operatorname{cosec}^{2} 65^{\circ}-\cot ^{2}\left(90^{\circ}-25^{\circ}\right)\right]}
$$

$=\frac{\operatorname{cosec}^{2} 63^{\circ}+\tan ^{2} 24^{\circ}}{\tan ^{2} 24^{\circ}+\operatorname{cosec}^{2} 63^{\circ}}$
$+\frac{\sin ^{2} 63^{\circ}+\cos ^{2} 63^{\circ}+\sin 27^{\circ} \operatorname{cosec} 27^{\circ}}{2\left(\operatorname{cosec}^{2} 65^{\circ}-\cot ^{2} 65^{\circ}\right)}=1+\frac{1+1}{2(1)}$
$=2$.
22. $\mathrm{LHS}=\frac{1}{\frac{1}{\sin \mathrm{~A}}-\frac{\cos \mathrm{A}}{\sin \mathrm{A}}}-\frac{1}{\sin \mathrm{~A}}$
$=\frac{\sin A}{1-\cos A}-\frac{1}{\sin A}=\frac{\sin ^{2} A-1+\cos A}{\sin A(1-\cos A)}$
$=\frac{1-\cos ^{2} A-1+\cos A}{\sin A(1-\cos A)}=\frac{\cos A(1-\cos A)}{\sin A(1-\cos A)}$
$=\cot \mathrm{A}$.

Section-D

23. Given equations of lines are:

$$
\begin{equation*}
3 x+y+4=0 \tag{i}
\end{equation*}
$$

and $\quad 6 x-2 y+4=0$
To draw the graphs of lines (i) and (ii), we need atleast two solutions of each equation. For equation (i), two solutions are:

x	0	-3
y	-4	5

For equation (ii), two solutions are:

x	0	2
y	2	8

Let us draw the graphs of the lines (i) and (ii).
From the graph it is clear that the two lines intersect each other at a point, $\mathrm{P}(-1,-1)$, therefore, the pair of equations consistent.
The solution is $x=-1, y=-1$.
24. (i) Let width of grass paths $=x \mathrm{~m}$
\therefore Length of rectangular pond

$$
=(50-2 x) \mathrm{m}
$$

breadth of rectangular pond

$$
=(40-2 x) \mathrm{m}
$$

\therefore Area of grass path $=$ Area of lawn

- Area of rectangular pond
$=50 \times 40-(50-2 x)(40-2 x)$
$=2000-2000+100 x+80 x-4 x^{2}$
$=180 x-4 x^{2}$
According to question

$$
180 x-4 x^{2}=1184
$$

$\Rightarrow 4 x^{2}-180 x+1184=0$
$\Rightarrow \quad x^{2}-45 x+296=0$
$\Rightarrow x^{2}-8 x-37 x+296=0$
$\Rightarrow x(x-8)-37(x-8)=0$
$\Rightarrow \quad(x-8)(x-37)=0$
$\Rightarrow \quad x=8$ or $x=37$
Reject $x=37$ as it is not possible
$\therefore \quad x=8 \mathrm{~m}$.
(ii) \therefore Length of pond $=34 \mathrm{~m}$; breadth of pond $=24 \mathrm{~m}$.
(iii) Love for environment.
25. Given: Let $P A$ and $P B$ be two tangents drawn from an external point P to a circle $\mathrm{C}(\mathrm{O}, r)$.

To prove: $\quad \mathrm{PA}=\mathrm{PB}$.
Construction: Join OA, OB and OP.
Proof: $\quad \angle \mathrm{OAP}=90^{\circ}$
[Tangent is perpendicular to radius at the point of contact]
Similarly, $\angle \mathrm{OBP}=90^{\circ}$
From (i) and (ii), we get

$$
\begin{equation*}
\angle \mathrm{OAP}=\angle \mathrm{OBP}=90^{\circ} \tag{iii}
\end{equation*}
$$

Now, in right $\Delta \mathrm{s}$ OAP and OBP,

$$
\begin{array}{rlrl}
\mathrm{OP} & =\mathrm{OP} \\
\mathrm{OA} & =\mathrm{OB} \\
\angle \mathrm{OAP} & =\angle \mathrm{OBP}=90^{\circ} \\
\therefore \quad \triangle \mathrm{OAP} & \cong \triangle \mathrm{OBP} \\
\Rightarrow \quad & \mathrm{PA} & =\mathrm{PB} .
\end{array}
$$

[Common]
[Radii]
[From (iii)]
[SAS]
[CPCT]
$\mathrm{AE}=\mathrm{AH}$ (Length of tangents from external points are equal)

$$
\begin{array}{rlrl}
\Rightarrow & & x & =4-x \Rightarrow 2 x=4 \Rightarrow x=2 \\
\Rightarrow & & \mathrm{DH} & =(5-2)=3 \mathrm{~cm} \\
\Rightarrow & \mathrm{DH} & =\mathrm{DG}=3 \mathrm{~cm} \\
\Rightarrow & & \mathrm{CF} & =\mathrm{CG} \Rightarrow 2 y-3=y \Rightarrow y=3 \\
& & \mathrm{DC} & =\mathrm{DG}+\mathrm{GC} \\
& & =3+3=6 \mathrm{~cm} .
\end{array}
$$

26. Statement: In a triangle, if square of the largest side is equal to the sum of the squares of the other two sides, then the angle opposite to the largest side is a right angle.

Proof: We are given a triangle $A^{\prime} B^{\prime} C^{\prime}$ with

$$
\begin{equation*}
A^{\prime} \mathrm{C}^{\prime 2}=\mathrm{A}^{\prime} \mathrm{B}^{\prime 2}+\mathrm{B}^{\prime} \mathrm{C}^{\prime 2} \tag{i}
\end{equation*}
$$

We have to prove that $\angle \mathrm{B}^{\prime}=90^{\circ}$
Let us construct a $\triangle \mathrm{PQR}$ with $\angle \mathrm{Q}=90^{\circ}$ such that

$$
\begin{equation*}
\mathrm{PQ}=\mathrm{A}^{\prime} \mathrm{B}^{\prime} \text { and } \mathrm{QR}=\mathrm{B}^{\prime} \mathrm{C}^{\prime} \tag{ii}
\end{equation*}
$$

In $\triangle P Q R$,

$$
\mathrm{PR}^{2}=\mathrm{PQ}^{2}+\mathrm{QR}^{2}
$$

(Pythagoras Theorem)

$$
\begin{equation*}
=A^{\prime} \mathrm{B}^{\prime 2}+\mathrm{B}^{\prime} \mathrm{C}^{\prime 2} \tag{iii}
\end{equation*}
$$

But $\mathrm{A}^{\prime} \mathrm{C}^{\prime 2}=\mathrm{A}^{\prime} \mathrm{B}^{\prime 2}+\mathrm{B}^{\prime} \mathrm{C}^{\prime 2} \ldots$ (iv) $[$ From (i) $]$
From equations (iii) and (iv), we have

$$
\begin{array}{rlrl}
& & \mathrm{PR}^{2} & =\mathrm{A}^{\prime} \mathrm{C}^{\prime 2} \\
\Rightarrow \quad \mathrm{PR} & =\mathrm{A}^{\prime} \mathrm{C}^{\prime} \tag{v}
\end{array}
$$

Now, in $\triangle A^{\prime} B^{\prime} \mathrm{C}^{\prime}$ and $\triangle \mathrm{PQR}$,

$$
\begin{align*}
& \mathrm{A}^{\prime} \mathrm{B}^{\prime}=\mathrm{PQ} \tag{ii}\\
& \mathrm{~B}^{\prime} \mathrm{C}^{\prime}=\mathrm{QR} \\
& \mathrm{~A}^{\prime} \mathrm{C}^{\prime}=\mathrm{PR}
\end{align*}
$$

[From (ii)]
[From (v)]

Therefore, $\Delta \mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime} \cong \triangle \mathrm{PQR}$
(SSS congruence rule)

$$
\begin{equation*}
\Rightarrow \quad \angle B^{\prime}=\angle \mathrm{Q} \tag{СРСТ}
\end{equation*}
$$

But $\angle \mathrm{Q}=90^{\circ}$
$\therefore \quad \angle \mathrm{B}^{\prime}=90^{\circ}$.
Hence proved.
2nd part
In $\triangle \mathrm{ABD}, \quad \angle \mathrm{D}=90^{\circ}$

$$
\begin{array}{rlrl}
\therefore & \mathrm{AB}^{2} & =\mathrm{AD}^{2}+\mathrm{BD}^{2} \\
\text { In } \triangle \mathrm{ACD}, & \angle \mathrm{D} & =90^{\circ} \\
\therefore \quad & \mathrm{AC}^{2} & =\mathrm{AD}^{2}+\mathrm{CD}^{2} \\
\text { So, } \quad \mathrm{AB}^{2}+\mathrm{AC}^{2} & =2 \mathrm{AD}^{2}+\mathrm{BD}^{2}+\mathrm{CD}^{2} \\
& & =2 \cdot \mathrm{BD}^{2} \times \mathrm{CD}^{2}+\mathrm{BD}^{2}+\mathrm{CD}^{2} \\
& \left(\because \quad \mathrm{AD}^{2}=\mathrm{BD} \times \mathrm{CD}\right) \\
& & & (\mathrm{BD}+\mathrm{CD})^{2} \\
\Rightarrow \quad \mathrm{AB}^{2}+\mathrm{AC}^{2} & =\mathrm{BC}^{2}
\end{array}
$$

Now, by above theorem, we have in $\triangle \mathrm{ABC}$,

$$
\angle \mathrm{BAC}=90^{\circ}
$$

$\Rightarrow \triangle \mathrm{ABC}$ is a right-angled triangle.

OR

Try yourself
27. (i) $\mathrm{V}_{1}=$ Volume ofjuice in cubical container

$$
=(5 \times 6 \times 22) \mathrm{cm}^{3}
$$

$\mathrm{V}_{2}=$ Volume of juice in cubical container

$$
=\frac{22}{7} \times(7)^{2} \times 22 \mathrm{~cm}^{3}
$$

$\mathrm{V}_{3}=$ Volume of juice in each small cone

$$
=\frac{1}{3} \times \frac{22}{7} \times(2)^{2} \times 3.5 \mathrm{~cm}^{3}
$$

\therefore Case I. If cubical packing is purchased, then number of small cones needed

$$
\begin{aligned}
& =\frac{V_{1}}{V_{3}}=\frac{5 \times 6 \times 22}{\frac{1}{3} \times \frac{22}{7} \times 2 \times 2 \times 3.5} \\
& =\frac{6 \times 10 \times 3}{2 \times 2}=3 \times 5 \times 3=45
\end{aligned}
$$

Case II. If cylindrical packing is purchased.
\therefore Number of small cones needed $=\frac{\mathrm{V}_{2}}{\mathrm{~V}_{3}}$

$$
\begin{aligned}
& =\frac{\frac{22}{7} \times 7 \times 7 \times 22}{\frac{1}{3} \times \frac{22}{7} \times 2 \times 2 \times 3.5}=\frac{7 \times 7 \times 22 \times 3 \times 10}{2 \times 2 \times 35} \\
& =7 \times 11 \times 3=231
\end{aligned}
$$

(ii) Mr Sharma must purchase cylindrical packing to serve maximum children.
(iii) Surface area and volume of solids.
(iv) Kindheartedness and helpful.
28. Let internal radius of pipe $=x \mathrm{~m}$.
and radius of base of tank

$$
=40 \mathrm{~cm}=\frac{2}{5} \mathrm{~m}
$$

Level of water raised in tank

$$
=3.15 \text { or } \frac{315}{100}
$$

Volume of water delivered in $\frac{1}{2} \mathrm{hr}$

$$
\begin{aligned}
& =\pi r^{2} h=\pi(x)^{2} \times 1260 \mathrm{~m} \\
& \quad[\because 2.52 \mathrm{~km}=1 \mathrm{hr}]
\end{aligned}
$$

$$
2520 \mathrm{~m}=1 \mathrm{hr}
$$

\therefore in $\frac{1}{2} \mathrm{hr}$ height $=\frac{1}{2} \times 2520=1260 \mathrm{~m}$
\therefore According to question,
$\Rightarrow \pi\left(x^{2}\right)(1260)=\pi \times \frac{2}{5} \times \frac{2}{5} \times \frac{315}{100}$
$\Rightarrow \quad x^{2}=\frac{4}{25} \times \frac{315}{100} \times \frac{1}{1260}=\frac{1}{2500}$
$\Rightarrow \quad x=\frac{1}{50} \mathrm{~m}=2 \mathrm{~cm}$
\therefore Internal diameter of pipe $=4 \mathrm{~cm}$.
OR
Let r and h be the radius of the base and height of a cone OAB.
Let $\mathrm{OE}=\frac{h}{2}$
Since, triangles OED and OFB are similar.

$$
\begin{aligned}
& \therefore \frac{\mathrm{OE}}{\mathrm{OF}}=\frac{\mathrm{ED}}{\mathrm{FB}} \\
& \Rightarrow \frac{\frac{h}{2}}{h}=\frac{\mathrm{ED}}{r} \Rightarrow \mathrm{ED}=\frac{r}{2}
\end{aligned}
$$

$$
\begin{aligned}
\text { Volume of cone OCD } & =\frac{1}{3} \pi \times \frac{r}{2} \times \frac{r}{2} \times \frac{h}{2} \\
& =\frac{\pi r^{2} h}{24}
\end{aligned}
$$

$$
\text { Volume of cone } \mathrm{OAB}=\frac{1}{3} \pi r^{2} h
$$

$$
\therefore \frac{\text { Volume of part OCD }}{\text { Volume of part CDBA }}=\frac{\frac{\pi r^{2} h}{24}}{\frac{\pi r^{2} h}{3}-\frac{\pi r^{2} h}{24}}
$$

$$
=\frac{\frac{1}{24}}{\frac{1}{3}-\frac{1}{24}}=\frac{\frac{1}{24}}{\frac{8-1}{24}}=\frac{1}{7}
$$

29. Let the tower be $P Q$ and the objects be A and B.

$$
\begin{array}{ll}
\because & \angle \mathrm{XQA}=45^{\circ} \text { and } \angle \mathrm{XQB}=60^{\circ} \\
\therefore & \angle \mathrm{QAP}=45^{\circ} \text { and } \angle \mathrm{QBP}=60^{\circ}
\end{array}
$$

(Alternate angles)
In right $\triangle \mathrm{APQ}$,

$$
\begin{aligned}
\angle \mathrm{PAQ}+\angle \mathrm{PQA} & =90^{\circ} \\
\Rightarrow \quad \angle \mathrm{PQA} & =90^{\circ}-45^{\circ}=45^{\circ}
\end{aligned}
$$

$$
\mathrm{x} \quad\left(\because \angle \mathrm{PAQ}=45^{\circ}\right)
$$

$$
\begin{array}{rlr}
\therefore & \mathrm{AP}=\mathrm{PQ}=150 & (\because \mathrm{PQ}=150 \mathrm{~m}) \\
\Rightarrow & \mathrm{AB}+\mathrm{BP}=150 & \ldots(i) \tag{i}
\end{array}
$$

In right $\triangle \mathrm{BPQ}$,

$$
\begin{align*}
& \tan 60^{\circ} & =\frac{\mathrm{PQ}}{\mathrm{BP}} \Rightarrow \sqrt{3}=\frac{150}{\mathrm{BP}} \\
\Rightarrow & \mathrm{BP} & =\frac{150}{\sqrt{3}} \tag{ii}
\end{align*}
$$

Putting BP $=\frac{150}{\sqrt{3}}$ in equation (i), we get

$$
\begin{array}{rlrl}
& \mathrm{AB}+\frac{150}{\sqrt{3}} & =150 \\
\Rightarrow & & \mathrm{AB} & =150\left(1-\frac{1}{\sqrt{3}}\right)
\end{array}
$$

$$
\begin{aligned}
\Rightarrow \quad \mathrm{AB} & =150 \times \frac{\sqrt{3}-1}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}} \\
& =50 \times(3-\sqrt{3})=50(3-1.73) \\
& =50 \times 1.27 \Rightarrow \mathrm{AB}=63.50 \mathrm{~m}
\end{aligned}
$$

Thus, distance between the two objects is 63.50 m .
30. Let us convert the given data into less than type distribution.

Class interval	f	Lifetimes (in hrs.)	$c f$
$0-20$	10	less than 20	10
$20-40$	35	less than 40	45
$40-60$	52	less than 60	97
$60-80$	61	less than 80	158
$80-100$	38	less than 100	196
$100-120$	29	less than 120	225

Figure: Less than type ogive

We mark the upper class limits along the x-axis with a suitable scale and the cumulative frequencies along the y-axis with a suitable scale. For this, we plot the points $\mathrm{A}(20$, 10), $\mathrm{B}(40,45), \mathrm{C}(60,97), \mathrm{D}(80,158), \mathrm{E}(100$, $196)$ and $F(120,225)$ on a graph paper. These points are joined by a free hand smooth curve to obtain a less than type ogive as shown in the given graph.

OR

Less than	Number of Students
10	4
20	9
30	22
40	42
50	56
60	64
70	68

Median distance is value of x that corresponds to cumulative frequency $\frac{\mathrm{N}}{2}=\frac{68}{2}=34$
Therefore, median distance $=36$.

Practice Paper-3

Section-A

1. $\frac{125}{2^{4} \cdot 5^{3}}=\frac{5^{3}}{16 \times 5^{3}}=\frac{1}{16}=0.0625$

Clearly, the decimal form of $\frac{125}{2^{4} \cdot 5^{3}}$ terminates after four places.
2.

$$
\begin{aligned}
f(x) & =3 x^{2}-3+2 x-5 \\
& =3 x^{2}+2 x-8
\end{aligned}
$$

$\therefore \quad$ Sum of zeroes $=-\frac{b}{a}=-\frac{2}{3}$
Product of zeroes $=\frac{c}{a}=-\frac{8}{3}$.
3. Condition of collinearity is:

$$
\begin{array}{rlrl}
x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+x_{3}\left(y_{1}-y_{2}\right) & =0 \\
\therefore & 1(k-4)+3(4-1)+(-1)(1-k) & =0 \\
\Rightarrow & k-4+9-1+k & =0 \\
\Rightarrow & k & =-2 .
\end{array}
$$

4.

$$
\begin{aligned}
\mathrm{BC} & =\mathrm{BP}+\mathrm{PC} \\
& =\mathrm{BR}+\mathrm{CQ} \\
& =3+[\mathrm{AC}-\mathrm{AQ}] \\
& =3+[11-4] \\
& =10 \mathrm{~cm} .
\end{aligned}
$$

5. $\because \quad 3$ Median $=2$ Mean + Mode
$\because \quad$ Median $=\frac{2 \times 27+45}{3}$

$$
=33 .
$$

6. Required prime numbers are:
$2,3,5,7,11,13,17,19,23,29$.
\therefore Required probability $=\frac{10}{30}=\frac{1}{3}$.

Section-B

7. Let us represent each of the numbers 30,72 and 432 as a product of primes.

$$
\begin{aligned}
30 & =2 \times 3 \times 5 \\
72 & =2^{3} \times 3^{2} \\
432 & =2^{4} \times 3^{3}
\end{aligned}
$$

Now, $\mathrm{HCF}=2 \times 3=6$
and \quad LCM $=2^{4} \times 3^{3} \times 5=2160$.
8. $15^{\text {th }}$ term from end of $-10,-20,-30$,,-980, - 990, - 1000
$=15^{\text {th }}$ term of $-1000,-990,-980$, \qquad

$$
-20,-10
$$

$$
=-1000+(15-1) \times(-990+1000)
$$

$$
=-1000+140=-860 .
$$

9. Let $\mathrm{A}(3,0), \mathrm{B}(6,4)$ and $\mathrm{C}(-1,3)$ are the vertices.
$\therefore \quad$ Consider $\mathrm{AB}=\sqrt{(6-3)^{2}+(4-0)^{2}}$

$$
\begin{aligned}
& =\sqrt{9+16}=\sqrt{25}=5 \\
\mathrm{BC} & =\sqrt{(-1-6)^{2}+(3-4)^{2}} \\
& =\sqrt{49+1}=\sqrt{50}=5 \sqrt{2} \\
\mathrm{AC} & =\sqrt{(-1-3)^{2}+(3-0)^{2}} \\
& =\sqrt{16+9}=\sqrt{25}=5
\end{aligned}
$$

Clearly

$$
\mathrm{AB}=\mathrm{AC}
$$

\Rightarrow Triangle is isosceles
also

$$
\mathrm{AB}^{2}+\mathrm{AC}^{2}=5^{2}+5^{2}=50
$$

and $\quad \mathrm{BC}^{2}=(5 \sqrt{2})^{2}=50$
$\Rightarrow \quad A B^{2}+A C^{2}=B^{2}$
\Rightarrow By converse of Pythagoras theorem $\angle \mathrm{A}=90^{\circ}$.
$\Rightarrow \triangle \mathrm{ABC}$ is right-angled isosceles triangle.
Hence proved
10. $\frac{4}{\cot ^{2} 30^{\circ}}+\frac{1}{\sin ^{2} 60^{\circ}}-\cos ^{2} 45^{\circ}$

$$
\begin{aligned}
& =\frac{4}{(\sqrt{3})^{2}}+\frac{1}{\left(\frac{\sqrt{3}}{2}\right)^{2}}-\left(\frac{1}{\sqrt{2}}\right)^{2} \\
& =\frac{4}{3}+\frac{4}{3}-\frac{1}{2}=\frac{8+8-3}{6}=\frac{13}{6} .
\end{aligned}
$$

11. Area of shaded part $=$ area of square - area of quadrant

$$
\begin{aligned}
& =(7)^{2}-\frac{1}{4} \pi(7)^{2} \\
& =49-\frac{1}{4} \times \frac{22}{7} \times 7 \times 7 \\
& =49-\frac{11}{2} \times 7 \\
& =49-\frac{77}{2}=49-38.5=10.5 \mathrm{~cm}^{2} .
\end{aligned}
$$

12. Total number of outcomes $=52$

Since, the drawn card should not be red or queen
Total number of red cards (including a red queen) $=13$
Total number of queens (excluding red queen) $=3$
\therefore Total favourable outcomes

$$
=13+3=16
$$

\therefore Required probability $=\frac{16}{52}=\frac{4}{13}$.

Section-C

13. Hint: Let a be any positive integer
$\therefore \quad a=3 q$ or $3 q+1$ or $3 q+2$
$\therefore \quad a^{2}=9 q^{2}=3 m ; m=3 q^{2}$
or $\quad a^{2}=(3 q+1)^{2}=3 m+1, m=q(3 q+2)$
or $\quad a^{2}=(3 q+2)^{2}=3 m+1, m=3 q^{2}+4 q+1$.

OR

We represent 6,72 and 120 in their prime factors.

$$
\begin{aligned}
6 & =2 \times 3 \\
72 & =2 \times 2 \times 2 \times 3 \times 3=2^{3} \times 3^{2} \\
120 & =2 \times 2 \times 2 \times 3 \times 5 \\
& =2^{3} \times 3 \times 5
\end{aligned}
$$

Now, HCF $=2 \times 3=6$
And $\mathrm{LCM}=2^{3} \times 3^{2} \times 5$

$$
=360 .
$$

14. See Worksheet-15 Sol. 6
15. Let the three terms of an A.P. be $a-d, a$ and $a+d$.

$$
\begin{aligned}
& \text { Sum }=a-d+a+a+d=24 \\
& \Rightarrow \quad 3 a=24 \\
& \Rightarrow \quad a=8
\end{aligned}
$$

Sum of squares $=(a-d)^{2}+a^{2}+(a+d)^{2}=194$
$\Rightarrow \quad a^{2}-2 a d+d^{2}+a^{2}+a^{2}+2 a d+d^{2}=194$
$\Rightarrow \quad 3 a^{2}+2 d^{2}=194$
$\Rightarrow \quad 192+2 d^{2}=194$
$(\because a=8)$
$\Rightarrow \quad 2 d^{2}=2$
$\Rightarrow \quad d^{2}=1 \Rightarrow d= \pm 1$
If $d=1$, numbers are $7,8,9$
If $d=-1$, numbers are $9,8,7$
Hence, the required numbers are $7,8,9$ or 9, 8, 7 .

OR

$$
S_{n}=3 n^{2}+2 n
$$

Replacing n by $n-1$, we get

$$
\begin{aligned}
\mathrm{S}_{n-1} & =3(n-1)^{2}+2(n-1) \\
& =(n-1)(3 n-3+2) \\
& =(n-1)(3 n-1) \\
& =3 n^{2}-n-3 n+1 \\
& =3 n^{2}-4 n+1
\end{aligned}
$$

We know that nth terms is given by

$$
\begin{aligned}
a_{n} & =\mathrm{S}_{n}-\mathrm{S}_{n-1} \\
\therefore \quad a_{n} & =3 n^{2}+2 n-3 n^{2}+4 n-1 \\
& =6 n-1 .
\end{aligned}
$$

16. Given system of linear equations can be written as:

$$
\begin{gathered}
(a-b) x+(a+b) y-\left(a^{2}-2 a b-b^{2}\right)=0 \\
(a+b) x+(a+b) y-\left(a^{2}+b^{2}\right)=0
\end{gathered}
$$

By cross-multiplication,

$$
\begin{aligned}
& \frac{x}{-(a+b)\left(a^{2}+b^{2}\right)+(a+b)\left(a^{2}-2 a b-b^{2}\right)} \\
& =\frac{-y}{-(a-b)\left(a^{2}+b^{2}\right)+(a+b)\left(a^{2}-2 a b-b^{2}\right)} \\
& =\frac{1}{(a-b)(a+b)-(a+b)(a+b)} \\
& \Rightarrow \frac{x}{-2 b(a+b)^{2}}=\frac{-y}{-4 a b^{2}}=\frac{1}{-2 b(a+b)}
\end{aligned}
$$

Hence, the solution of given system of equations is

$$
\begin{gathered}
x=a+b, \\
y=-\frac{2 a b}{a+b} .
\end{gathered}
$$

17. Let the points of trisection be $\mathrm{P}\left(x_{1}, y_{1}\right)$ and $\mathrm{Q}\left(x_{2}, y_{2}\right)$ such that P is the mid-point of $\mathrm{A}(3,-2), \mathrm{Q}\left(x_{2}, y_{2}\right)$ and Q is the mid-point of $\mathrm{P}\left(x_{1}, y_{1}\right), \mathrm{B}(-3,-4)$.
i.e., $\quad \mathrm{AP}=\mathrm{PQ}=\mathrm{QB}$

$\Rightarrow \quad \mathrm{AP}: \mathrm{PB}=1: 2$
Using section formula,
$\therefore \quad x_{1}=\frac{-3+2 \times 3}{1+2}, y_{1}=\frac{-4+2 \times(-2)}{1+2}$
$\Rightarrow \quad x_{1}=1, y_{1}=-\frac{8}{3}$
Again AQ: QB $=2: 1$
$\therefore \quad x_{2}=\frac{2 \times(-3)+3}{2+1}, y_{2}=\frac{2 \times(-4)-2}{2+1}$
$\Rightarrow \quad x_{2}=-1, y_{2}=-\frac{10}{3}$
Hence, the required points are $\mathrm{P}\left(1,-\frac{8}{3}\right)$ and $Q\left(-1,-\frac{10}{3}\right)$

OR

Let

$$
\begin{aligned}
\mathrm{A}(2,3) & \equiv \mathrm{A}\left(x_{1}, y_{1}\right) \\
\mathrm{B}(-1,0) & \equiv \mathrm{B}\left(x_{2}, y_{2}\right) \\
\mathrm{C}(2,-4) & \equiv \mathrm{C}\left(x_{3}, y_{3}\right)
\end{aligned}
$$

and
Now, area of $\triangle A B C$
$\left.=\left\lvert\, \frac{1}{2}\left\{x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+x_{3}\left(y_{1}-y_{2}\right)\right\}\right.\right]$
$\left.=\left\lvert\, \frac{1}{2}\{2(0-(-4))+(-1)(-4-3)+2(3-0)\}\right.\right]$
$=\left|\frac{1}{2}(2 \times 4+7+6)\right|$
$=\left|\frac{1}{2}(8+7+6)\right|=\left|\frac{1}{2} \times 21\right|=\frac{21}{2}$ sq. units.
18. To draw a pair of tangents from P to the circle with centre O, we follow the steps as given:
(a) Join OP and find its mid-point M.

(b) Taking M as centre and radius $=\mathrm{MP}$ = MO, draw a circle to intersect the given circle at A and B.
(c) Join PA and PB.

PA and PB are the required tangents.
On measuring, $\mathrm{PA}=6.35 \mathrm{~cm}$ and $\mathrm{PB}=6.35 \mathrm{~cm}$. Clearly, PA and PB are of same length.
19. Statement: In a triangle, if square of the largest side is equal to the sum of the squares of the other two sides, then the angle opposite to the largest side is a right angle.
Proof: We are given a triangle $\mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime}$ with

$$
\begin{equation*}
A^{\prime} C^{\prime 2}=A^{\prime} B^{\prime 2}+B^{\prime} C^{\prime 2} \tag{i}
\end{equation*}
$$

We have to prove that $\angle \mathrm{B}^{\prime}=90^{\circ}$
Let us construct a $\triangle \mathrm{PQR}$ with $\angle \mathrm{Q}=90^{\circ}$ such that

$$
\begin{equation*}
\mathrm{PQ}=\mathrm{A}^{\prime} \mathrm{B}^{\prime} \text { and } \mathrm{QR}=\mathrm{B}^{\prime} \mathrm{C}^{\prime} \tag{ii}
\end{equation*}
$$

In $\triangle P Q R$,

$$
\mathrm{PR}^{2}=\mathrm{PQ}^{2}+\mathrm{QR}^{2}
$$

(Pythagoras Theorem)

$$
\begin{equation*}
=A^{\prime} B^{\prime 2}+B^{\prime} C^{\prime 2} \tag{iii}
\end{equation*}
$$

[From (ii)]
But $\quad \mathrm{A}^{\prime} \mathrm{C}^{\prime 2}=\mathrm{A}^{\prime} \mathrm{B}^{\prime 2}+\mathrm{B}^{\prime} \mathrm{C}^{\prime 2}$
[From (i)]
From equations (iii) and (iv), we have

$$
\begin{array}{rlrl}
& & \mathrm{PR}^{2} & =\mathrm{A}^{\prime} \mathrm{C}^{\prime 2} \\
\Rightarrow \quad & \mathrm{PR} & =\mathrm{A}^{\prime} \mathrm{C}^{\prime} \tag{v}
\end{array}
$$

Now, in $\triangle \mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime}$ and $\triangle \mathrm{PQR}$,

$$
\begin{aligned}
\mathrm{A}^{\prime} \mathrm{B}^{\prime} & =\mathrm{PQ} \\
\mathrm{~B}^{\prime} \mathrm{C}^{\prime} & =\mathrm{QR} \\
\mathrm{~A}^{\prime} \mathrm{C}^{\prime} & =\mathrm{PR}
\end{aligned}
$$

[From (ii)] [From (ii)]
[From (v)]
Therefore, $\Delta \mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime} \cong \Delta \mathrm{PQR}$
(SSS congruence rule)
$\Rightarrow \quad \angle B^{\prime}=\angle \mathrm{Q}$
(СРСТ)
But $\quad \angle \mathrm{Q}=90^{\circ}$
$\therefore \quad \angle \mathrm{B}^{\prime}=90^{\circ}$.
Hence proved.
20. \because Modal class is $30-40$,

$$
\begin{aligned}
\therefore \quad l & =30, f_{1}=16, \\
& f_{0}
\end{aligned}=x, f_{2}=12, h=10
$$

and \quad Mode $=3$
Using the formula: Mode

$$
\begin{aligned}
&=l+h\left\{\frac{f_{1}-f_{0}}{2 f_{1}-f_{0}-f_{2}}\right\} \text { we get, } \\
& 32=30+10 x\left[\frac{16-x}{32-x-12}\right] \\
& \Rightarrow \quad \frac{160-10 x}{20-x}=2 \Rightarrow 160-10 x=40-2 x \\
& \Rightarrow \quad 120=8 x \Rightarrow x=15 \\
& \therefore \text { Missing frequency is } 15 .
\end{aligned}
$$

21. LHS $=\frac{\cos \mathrm{A}-\sin \mathrm{A}+1}{\cos \mathrm{~A}+\sin \mathrm{A}-1}$

Dividing numerator and denominator by $\sin \mathrm{A}$, we get

$$
\begin{aligned}
& =\frac{\cot \mathrm{A}-1+\operatorname{cosec} \mathrm{A}}{\cot \mathrm{~A}+1-\operatorname{cosec} \mathrm{A}} \\
& =\frac{(\cot \mathrm{A}+\operatorname{cosec} \mathrm{A})-\left(\operatorname{cosec}^{2} \mathrm{~A}-\cot ^{2} \mathrm{~A}\right)}{\cot \mathrm{A}+1-\operatorname{cosec} \mathrm{A}} \\
& =\frac{(\operatorname{cosec} \mathrm{A}+\cot \mathrm{A})[1-\operatorname{cosec} \mathrm{A}+\cot \mathrm{A}]}{\cot \mathrm{A}-\operatorname{cosec} \mathrm{A}+1}
\end{aligned}
$$

$$
=\operatorname{cosec} \mathrm{A}+\cot \mathrm{A}=\text { RHS. }
$$

OR

$$
\text { LHS }=\sqrt{\frac{1-\sin \theta}{1+\sin \theta} \times \frac{1-\sin \theta}{1-\sin \theta}}
$$

$$
=\sqrt{\frac{(1-\sin \theta)^{2}}{1-\sin ^{2} \theta}}=\sqrt{\frac{(1-\sin \theta)^{2}}{\cos ^{2} \theta}}
$$

$$
=\frac{1-\sin \theta}{\cos \theta}=\frac{1}{\cos \theta}-\frac{\sin \theta}{\cos \theta}
$$

$$
=\sec \theta-\tan \theta
$$

22. $\quad \sin (x+y)=1$ and $\cos (x-y)=\frac{\sqrt{3}}{2}$
$\Rightarrow \sin (x+y)=\sin 90^{\circ}$ and $\cos (x-y)$

$$
=\cos 30^{\circ}
$$

$\Rightarrow \quad x+y=90^{\circ}$ and $x-y=30^{\circ}$
Adding and subtracting, we get respectively

$$
\begin{array}{rl}
2 x & =120^{\circ} \text { and } 2 y=60^{\circ} \\
\text { i.e., } \quad x & x 0^{\circ} \text { and } y=30^{\circ} .
\end{array}
$$

Section-D

23. To draw a line, we need atleast two solutions of its corresponding equation.
$x+3 y=6$; at $x=0, y=2$ and $x=3, y=1$.
So, two solutions of $x+3 y=6$ are:

x	0	3
y	2	1

$2 x-3 y=12$; at $x=0, y=-4$ and at $x=6, y=0$
So, two solutions of $2 x-3 y=12$ are:

x	0	6
y	-4	0

Now, we draw the graph of given system of equations by using their corresponding solutions obtained in the above tables.
From the graph, the two lines intersect the y-axis at $(0,2)$ and $(0,-4)$.
24. (i) Let usual speed $=x \mathrm{~km} / \mathrm{hr}$.

$$
\begin{aligned}
& \text { As distance } & =\text { Time } \times \text { Speed } \\
\therefore & \text { Usual time } & =\frac{1500}{x} \\
& \text { New speed } & =(x+250)
\end{aligned}
$$

$$
\therefore \quad \text { New time }=\frac{1500}{(x+250)}
$$

According to question,
Usual time of flight - New time of flight $=30$ minutes $=\frac{1}{2} \mathrm{hr}$.

$$
\begin{array}{rrr}
\Rightarrow & \frac{1500}{x}-\frac{1500}{x+250} & =\frac{1}{2} \\
\Rightarrow & 1500\left[\frac{x+250-x}{x(x+250)}\right] & =\frac{1}{2} \\
\Rightarrow & 3000 \times 250=x(x+250) \\
\Rightarrow & x^{2}+250 x-750000=0 \\
\Rightarrow & x^{2}+1000 x-750 x-750000=0 \\
\Rightarrow & x(x+1000)-750(x+1000)=0 \\
\Rightarrow & (x-750)(x+1000)=0 \\
\Rightarrow & x=750 \text { or } x=-1000
\end{array}
$$

(Rejected)
$\therefore \quad$ Usual speed $=750 \mathrm{~km} / \mathrm{h}$
(ii) Formation and solving a quadratic equation by splitting the middle term.
(iii) Punctuality of pilot is reflected in this problem.
25. Hint:

Similarly,

$$
\begin{array}{rlrl}
& \angle \mathrm{CBQ} & =2 \angle \mathrm{CBO} \\
\text { As } & \angle \mathrm{PAC}+\angle \mathrm{CBQ} & =180^{\circ} \\
\Rightarrow & \frac{1}{2} \angle \mathrm{PAC}+\frac{1}{2} \angle \mathrm{CBQ} & =\frac{1}{2} \times 180^{\circ} \\
\Rightarrow & \angle \mathrm{CAO}+\angle \mathrm{CBO} & =90^{\circ} \\
\therefore & \angle \mathrm{AOB} & =90^{\circ} \\
& \mathrm{OR}
\end{array}
$$

Given: Let PA and PB be two tangents drawn from an external point P to a circle $\mathrm{C}(\mathrm{O}, r)$.

To prove: $\quad \mathrm{PA}=\mathrm{PB}$.
Construction: Join OA, OB and OP.
Proof: $\quad \angle \mathrm{OAP}=90^{\circ}$
[Tangent is perpendicular to radius at the point of contact]
Similarly, $\angle \mathrm{OBP}=90^{\circ}$
From (i) and (ii), we get

$$
\begin{equation*}
\angle \mathrm{OAP}=\angle \mathrm{OBP}=90^{\circ} \tag{iii}
\end{equation*}
$$

Now, in right $\triangle \mathrm{s}$ OAP and OBP,

$\mathrm{OP}=\mathrm{OP}$	[Common]
$\mathrm{OA}=\mathrm{OB}$	[Radii]

OA
[Radii]

$$
\begin{array}{rlrrr}
& & \angle \mathrm{OAP} & =\angle \mathrm{OBP}=90^{\circ}[\text { From (iii) }] \\
& \therefore & & \triangle \mathrm{OAP} & \cong \triangle \mathrm{OBP}
\end{array}
$$

Note: Theorem can also be proved by using Pythagoras theorem as

$$
\begin{aligned}
\mathrm{AP}^{2} & =\mathrm{OP}^{2}-\mathrm{OA}^{2} \\
& =\mathrm{OP}^{2}-\mathrm{OB}^{2}=\mathrm{PB}^{2} \\
\Rightarrow \quad \mathrm{AP} & =\mathrm{PB} . \quad[\because \mathrm{OA}=\mathrm{OB}]
\end{aligned}
$$

26. Let the two given triangles be $A B C$ and $P Q R$ such that $\triangle \mathrm{ABC} \sim \triangle \mathrm{PQR}$

$$
\begin{equation*}
\therefore \quad \frac{\mathrm{AB}}{\mathrm{PQ}}=\frac{\mathrm{BC}}{\mathrm{QR}} \tag{i}
\end{equation*}
$$

Let us draw perpendiculars AD and PM from A and P to $B C$ and $Q R$ respectively.
$\therefore \quad \angle \mathrm{ADB}=\angle \mathrm{PMQ}=90^{\circ}$
Now, in $\triangle \mathrm{ABD}$ and $\triangle \mathrm{PQM}$,

$$
\angle \mathrm{B}=\angle \mathrm{Q}
$$

$(\because \Delta \mathrm{ABC} \sim \Delta \mathrm{PQR})$
$\angle \mathrm{ADB}=\angle \mathrm{PMQ} \quad[$ From (ii) $]$
So, by AA rule of similarity, we have

$$
\Delta \mathrm{ABD} \sim \Delta \mathrm{PQM}
$$

$$
\begin{equation*}
\Rightarrow \quad \frac{\mathrm{AB}}{\mathrm{PQ}}=\frac{\mathrm{AD}}{\mathrm{PM}} \tag{iii}
\end{equation*}
$$

From equations (i) and (iii), we get

$$
\begin{equation*}
\frac{\mathrm{BC}}{\mathrm{QR}}=\frac{\mathrm{AD}}{\mathrm{PM}} \tag{iv}
\end{equation*}
$$

Now, $\begin{aligned} \frac{\operatorname{ar}(\triangle \mathrm{ABC})}{\operatorname{ar}(\triangle \mathrm{PQR})} & =\frac{\frac{1}{2} \times \mathrm{BC} \times \mathrm{AD}}{\frac{1}{2} \times \mathrm{QR} \times \mathrm{PM}} \\ & =\frac{\frac{1}{2} \times \mathrm{BC} \times \mathrm{BC}}{\frac{1}{2} \times \mathrm{QR} \times \mathrm{QR}}\end{aligned}$
[Using (iv)]

$$
\begin{equation*}
=\left(\frac{\mathrm{BC}}{\mathrm{QR}}\right)^{2} \tag{v}
\end{equation*}
$$

Similarly, we can prove that

$$
\begin{equation*}
\frac{\operatorname{ar}(\triangle \mathrm{ABC})}{\operatorname{ar}(\triangle \mathrm{PQR})}=\left(\frac{\mathrm{AB}}{\mathrm{PQ}}\right)^{2} \tag{vi}
\end{equation*}
$$

and $\quad \frac{\operatorname{ar}(\triangle \mathrm{ABC})}{\operatorname{ar}(\triangle \mathrm{PQR})}=\left(\frac{\mathrm{AC}}{\mathrm{PR}}\right)^{2}$
From equations (v), (vi) and (vii), we obtain

$$
\begin{aligned}
\frac{\operatorname{ar}(\triangle \mathrm{ABC})}{\operatorname{ar}(\triangle \mathrm{PQR})} & =\left(\frac{\mathrm{AB}}{\mathrm{PQ}}\right)^{2} \\
& =\left(\frac{\mathrm{BC}}{\mathrm{QR}}\right)^{2}=\left(\frac{\mathrm{AC}}{\mathrm{PR}}\right)^{2} .
\end{aligned}
$$

Hence, the theorem
Further, in the question

$$
\begin{array}{rlrl}
& \frac{\operatorname{ar}(\triangle \mathrm{ABC})}{\operatorname{ar}(\triangle \mathrm{DEF})} & =\left(\frac{\mathrm{BC}}{\mathrm{EF}}\right)^{2} \\
\Rightarrow \quad & \frac{64}{121} & =\frac{\mathrm{BC}^{2}}{15.4 \times 15.4} \\
\Rightarrow \quad & \mathrm{BC} & =\sqrt{\frac{64 \times 15.4 \times 15.4}{121}} \\
& =\frac{8}{11} \times 15.4=11.2 \mathrm{~cm} .
\end{array}
$$

27. Let height of hill $=h \mathrm{~m}$

In right $\triangle A B C, \tan 30^{\circ}=\frac{A B}{B C}$
$\Rightarrow \quad \frac{1}{\sqrt{3}}=\frac{50}{\mathrm{BC}}$
$\Rightarrow \quad B C=50 \sqrt{3} \mathrm{~m}$
In right $\triangle \mathrm{DCB}$;

$$
\begin{array}{rlrl}
& & \tan 60^{\circ} & =\frac{\mathrm{DC}}{\mathrm{BC}} \Rightarrow \sqrt{3}=\frac{h}{50 \sqrt{3}} \\
\Rightarrow & h & =50 \times 3=150 \mathrm{~m} .
\end{array}
$$

OR

In the adjoining figure, $A B$ is the pedestal, $B C$ is the statue and P is the point of observation.

Let $\mathrm{AB}=h$ and $\mathrm{AP}=x$
In right $\triangle \mathrm{PAB}$,

$$
\begin{align*}
& & \tan 45^{\circ} & =\frac{h}{x} \Rightarrow 1=\frac{h}{x} \\
\Rightarrow & x & =h & \ldots(i) \tag{i}
\end{align*}
$$

In right $\triangle \mathrm{PAC}$,

$$
\begin{array}{rlrl}
& & \tan 60^{\circ} & =\frac{h+1.46}{x} \\
\Rightarrow \quad & \sqrt{3} & =\frac{h+1.46}{h} \\
\Rightarrow \quad & \quad \sqrt{3} h & =h+1.46 \\
\Rightarrow \quad(\sqrt{3}-1) h & =1.46 \\
\Rightarrow \quad & h & =\frac{1.46}{\sqrt{3}-1} \times \frac{\sqrt{3}+1}{\sqrt{3}+1} \\
& =0.73 \times(1.73+1) \\
& =1.9929
\end{array}
$$

Hence, the height of the pedestal is 1.99 m .
28. $r=\frac{4.2}{2}=2.1 \mathrm{~cm}$ and $h=2.8 \mathrm{~cm}$

$$
\begin{aligned}
\therefore \quad l & =\sqrt{r^{2}+h^{2}}=\sqrt{(2.1)^{2}+(2.8)^{2}} \\
& =\sqrt{4.41+7.84}=\sqrt{12.25} \\
& =3.5 \mathrm{~cm}
\end{aligned}
$$

\therefore T.S.A. of remaining solid

$$
\begin{aligned}
&= \text { C.S.A. of cylinder } \\
&+ \text { Area of circular base } \\
&+ \text { C.S.A. of cone } \\
&=2 \pi r h+\pi r^{2}+\pi r l
\end{aligned}
$$

$$
\begin{aligned}
& =\pi r(2 h+r+l) \\
& =\frac{22}{7} \times 2.1(2 \times 2.8+2.1+3.5) \\
& =\frac{22}{7} \times \frac{21}{10} \times(5.6+2.1+3.5) \\
& =\frac{66}{10} \times 11.2 \\
& =73.92 \mathrm{~cm}^{2} .
\end{aligned}
$$

29. Volume of cylindrical tank $=\pi(5)^{2} \times 2$

$$
=50 \pi \mathrm{~cm}^{3}
$$

\therefore Volume of water that flows through pipe in x hours
$=$ Volume of cylinder of radius 10 cm and length $(=4 x \mathrm{~km})=4000 x \mathrm{~m}$.

$$
=\pi \times\left(\frac{1}{10} \mathrm{~m}\right)^{2} \times 4000 x \mathrm{~m}=40 \pi x \mathrm{~m}^{3}
$$

$\therefore \quad 40 \pi x=50 \pi$
$\Rightarrow \quad x=\frac{5}{4} \mathrm{hrs} .=1 \mathrm{hr} 15 \mathrm{~min}$.

OR

Radius of sphere $=\frac{6}{2}=3 \mathrm{~cm}$
Volume of sphere $=\left(\mathrm{V}_{1}\right)=\frac{4}{3} \pi(3)^{3}$

$$
=4 \pi \times 9=36 \pi \mathrm{~cm}^{3}
$$

Let $r=$ radius of circular base of cylinder

$$
\therefore \quad r=\frac{12}{2}=6 \mathrm{~cm} .
$$

Let level of water raised by $h \mathrm{~m}$

\therefore Volume of water raised in cylinder

$$
=\text { Volume of sphere }
$$

$\Rightarrow \quad \pi r^{2} h=36 \pi$
$\Rightarrow \quad 6 \times 6 \times h=36$
$\Rightarrow \quad h=1 \mathrm{~cm}$.
\Rightarrow Water surface will raised by 1 cm .
30. See Worksheet 133, Sol. 8

Practice Paper-4

Section-A

1.

$$
\begin{aligned}
\mathrm{HCF} & =9 \\
\mathrm{LCM} & =360
\end{aligned}
$$

Let first number $a=45$

$$
\text { 2nd number }=b
$$

$$
\text { As } \quad a \times b=\mathrm{HCF} \times \mathrm{LCM}
$$

$$
\Rightarrow \quad 45 \times b=9 \times 360
$$

$$
\Rightarrow \quad b=\frac{9 \times 360}{45}
$$

$$
=\frac{360}{5}=72
$$

$$
\therefore \quad b=72
$$

2. $p(x)=a x^{2}-3(a-1)-1$ $x=1$ is a zero of $p(x)$
$\Rightarrow \quad p(1)=0$
$\Rightarrow \quad a(1)^{2}-3(a-1)-1=0$
$\Rightarrow \quad a-3 a+3-1=0$
$\Rightarrow \quad-2 a+2=0$
$\Rightarrow \quad-2 a=-2 \Rightarrow a=1$.
3. Let $\mathrm{A}(x, 7)$ and $\mathrm{B}(-1,-5)$ be two points

As

$$
\mathrm{AB}=13
$$

$\Rightarrow \quad \mathrm{AB}^{2}=169$
$\Rightarrow(x+1)^{2}+(7+5)^{2}=169$
$\Rightarrow \quad(x+1)^{2}=169-144=25$
$\Rightarrow \quad x+1= \pm 5$
$\Rightarrow \quad x+1=5$ or $x+1=-5$
$\Rightarrow \quad x=4$ or $x=-6$.
4. From figure;

As
$\mathrm{OT} \perp \mathrm{TP} \Rightarrow \angle \mathrm{OTP}=90^{\circ}$
\therefore In $\triangle \mathrm{OTP}$:

$$
\begin{aligned}
& & \angle \mathrm{TOP} & =180^{\circ}-\left(90+30^{\circ}\right)=60^{\circ} \\
\therefore & & \angle \mathrm{POS} & =\angle \mathrm{TOP} \\
\therefore & & \angle \mathrm{TOS} & =\angle \mathrm{TOP}+\angle \mathrm{POS} \\
& & & 60+60=120^{\circ} .
\end{aligned}
$$

5. Median $=\frac{(x+2)+(x+3)}{2}$

$$
\begin{array}{ll}
\Rightarrow & 27.5=\frac{2 x+5}{2} \Rightarrow 55=2 x+5 \\
\Rightarrow & 2 x=50 \Rightarrow x=25 .
\end{array}
$$

6. Probability of losing

$$
\begin{aligned}
& =1-\text { probability of wining } \\
& =1-0.7=0.3 .
\end{aligned}
$$

Section-B

7. Let if possible that $(x+\sqrt{y})$ is rational as x is rational
(Given)
$\therefore(x+\sqrt{y})-x$ should be rational
$\Rightarrow \sqrt{y}$ should be rational
Not possible as it is given that \sqrt{y} is irrational.
Hence $x+\sqrt{y}$ can't be rational
$\Rightarrow x+\sqrt{y}$ is irrational. Hence proved.
8. We know $a_{n}=a+(n-1) d$
\therefore According to question,

$$
\begin{array}{rlrl}
& & a_{2} & =4 \text { and } a_{7}=-11 \\
\Rightarrow & 4 & =a+(2-1) d \\
\Rightarrow & 4 & =a+d \\
\text { and } & -11 & =a+(7-1) d \\
\Rightarrow & -11 & =a+6 d \tag{ii}
\end{array}
$$

Solving (i) and (ii), we get

$$
\begin{aligned}
a & =7 ; d=-3 \\
\therefore \quad a_{16} & =a+15 d \\
& =7+15(-3)=7-45 \\
a_{16} & =-38 .
\end{aligned}
$$

9. As P lies on x-axis, its ordinate is zero.

Let $(x, 0)$ be coordinate of P
\therefore By section formula:

$$
x=\frac{m_{1} x_{2}+m_{2} x_{1}}{m_{1}+m_{2}} \text { and } y=\frac{m_{1} y_{2}+m_{2} y_{1}}{m_{1}+m_{2}}
$$

$\Rightarrow \quad x=\frac{2(2)+1(5)}{2+1}=3$ and $y=\frac{2(-3)+1(a)}{2+1}$
$\Rightarrow \quad 0=-6+a \Rightarrow a=6$
\therefore (i) $a=6$
(ii) Coordinate of $\mathrm{P}=(3,0)$.
10. $\frac{4}{3} \times\left(\frac{1}{\sqrt{3}}\right)^{2}+\left(\frac{\sqrt{3}}{2}\right)^{2}-3 \times\left(\frac{1}{2}\right)^{2}+\frac{3}{4} \times(\sqrt{3})^{2}$ $-2 \times(1)^{2}$

$$
\begin{aligned}
& =\frac{4}{3} \times \frac{1}{3}+\frac{3}{4}-\frac{3}{4}+\frac{3}{4} \times 3-2 \\
& =\frac{4}{9}+\frac{3}{4}-\frac{3}{4}+\frac{9}{4}-2 \\
& =\frac{4}{9}+\frac{9}{4}-2=\frac{16+81-72}{36}=\frac{25}{36} .
\end{aligned}
$$

11. Shaded part $=$ Aarea of square -4

$$
\begin{aligned}
& \times \text { Area of circle } \\
= & (14)^{2}-4\left(\pi r^{2}\right) \\
= & 196-4 \times \frac{22}{7} \times \frac{7}{2} \times \frac{7}{2} \\
= & 196-154=42 \mathrm{~cm}^{2} .
\end{aligned}
$$

12. (i) $\frac{1}{12}$
(ii) $\frac{1}{12}$

Section-C

13. Let a be any positive odd integer.

Let 6 be divisor q be quotient and $r=$ remainder
\therefore By Euclid's lemma:

$$
\Rightarrow \quad \begin{aligned}
a & =6 q+r, 0 \leq r<6, r \in z \\
a & =6 q+0 \\
a & =6 q+1 \\
a & =6 q+2 \\
a & =6 q+3 \\
a & =6 q+4 \\
a & =6 q+5
\end{aligned}
$$

as a is odd
\Rightarrow We can take $a=6 q+1$ or $6 q+3$, or $6 q+5$
\therefore Any positive odd integer is of the form: $6 q+1,6 q+3,6 q+5$.
14. Since $\sqrt{5}$ and $-\sqrt{5}$ are zeroes of $f(x)$ $\therefore(x-\sqrt{5})$ and $(x+\sqrt{5})$ are both factors of $f(x)$

Also $\quad S_{20}=\frac{20}{2}[2 a+(20-1) d]$
$\Rightarrow \quad 1770=10(2 a+19 d)$
$\Rightarrow \quad 177=2 a+19 d$
Subtracting (i) from (ii): we get

$$
\begin{array}{rlrl}
& & 99 & =11 d \Rightarrow d=9 \\
& \therefore \text { From }(i) \Rightarrow 78 & =2 a+72 \\
\Rightarrow & 39 & =a+36 \\
\Rightarrow & a & =3
\end{array}
$$

OR

$$
a=7, d=11-7=4
$$

Let

$$
a_{n}=111
$$

$$
\Rightarrow \quad a+(n-1) \times d=111
$$

$$
\Rightarrow \quad 7+(n-1) \times 4=111
$$

$$
\Rightarrow \quad 7+4 n-4=111 \Rightarrow 4 n=108
$$

$$
\Rightarrow \quad n=27
$$

$$
\therefore \quad \mathrm{S}_{n}=\mathrm{S}_{27}=\frac{27}{2}(7+111)
$$

$$
=\frac{27}{2} \times 118=27 \times 59
$$

$$
=1593
$$

16. From given equations

$$
\begin{aligned}
& a_{1}=\frac{1}{a} ; b_{1}=\frac{1}{b} ; c_{1}=2 \\
& a_{2}=a ; \quad b_{2}=-b ; c_{2}=a^{2}-b^{2}
\end{aligned}
$$

\therefore Using cross-multiplication method:

$$
\Rightarrow \frac{1}{b}
$$

$$
\begin{aligned}
\Rightarrow \frac{x}{\left(\frac{a^{2}-b^{2}}{b}+2 b\right)} & =\frac{y}{\left(2 a-\frac{a^{2}-b^{2}}{a}\right)} \\
& =\frac{-1}{-\frac{b}{a}-\frac{a}{b}}
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \quad \frac{x}{\left(\frac{a^{2}+b^{2}}{b}\right)}=\frac{y}{\left(\frac{b^{2}-a^{2}}{a}\right)}=\frac{-1}{\frac{-\left(b^{2}+a^{2}\right)}{a b}} \\
& \Rightarrow \quad x=\frac{\frac{\left(a^{2}+b^{2}\right)}{b}}{+\frac{\left(b^{2}+a^{2}\right)}{a b}} \\
& =+\frac{a b}{b}=+a \\
& \text { and } \quad y=\frac{-\frac{\left(b^{2}+a^{2}\right)}{a}}{\frac{\left(b^{2}+a^{2}\right)}{a b}}=\frac{a b}{a}=b \\
& \therefore \quad x=a ; y=b \text {. } \\
& \text { OR }
\end{aligned}
$$

Given: $\quad x+y=7$

$$
\begin{equation*}
12 x+5 y=7 \tag{i}
\end{equation*}
$$

Taking equation (i), we have

$$
x=7-y
$$

Putting $x=7-y$ in equation (ii), we get

$$
\begin{array}{rlrl}
& & 12(7-y)+5 y & =7 \\
\Rightarrow & 84-12 y+5 y & =7 \\
\Rightarrow & & 84-7 y & =7 \\
\Rightarrow & & -7 y & =7-84 \\
\Rightarrow & & -7 y & =-77 \\
\Rightarrow & & y & =\frac{-77}{-7} \quad \Rightarrow y=11
\end{array}
$$

Putting $y=11$ in equation (i), we have

$$
\begin{aligned}
& & x+11 & =7 \\
\Rightarrow & & x & =7-11 \\
\Rightarrow & & x & =-4
\end{aligned}
$$

Therefore, $x=-4, y=11$ is the required solution.
17. Join AC
ar of quad $(\mathrm{ABCD})=\operatorname{ar}(\triangle \mathrm{ABC})+\operatorname{ar}(\triangle \mathrm{ACD})$

We know

$$
\begin{array}{r}
\operatorname{ar} \text { of } \left.\Delta=\frac{1}{2} \right\rvert\, x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right) \\
+x_{3}\left(y_{1}-y_{2}\right) \mid
\end{array}
$$

$\therefore \operatorname{ar}$ of $\left.(\triangle \mathrm{ABC})=\frac{1}{2} \right\rvert\,-2(1-4)+5(4+2)$

$$
+2(-2-1)
$$

$$
=\frac{1}{2}(30)=15 \text { sq. unit }
$$

and ar of ($\triangle \mathrm{ACD}$)
$=\frac{1}{2}|-2(4-5)+2(5+2)+(-1)(-2-4)|$
$=\frac{1}{2}(22)=11$ sq. unit
\therefore Area of quad $\mathrm{ABCD}=15+11=26$ sq. unit
18. Statement: If a line is drawn parallel to one side of a triangle to intersect the other two sides at distinct points, the other two sides are divided in the same ratio.

Proof: ABC is a given triangle in which $D E \| B C$. DE intersects $A B$ and $A C$ at D and E respectively.

We have to prove

$$
\frac{A B}{B D}=\frac{A E}{C E}
$$

Let us draw $\mathrm{EM} \perp \mathrm{AB}$ and $\mathrm{DN} \perp \mathrm{AC}$. Join $B E$ and CD.
Now, $\operatorname{ar}(\triangle \mathrm{ADE})=\frac{1}{2} \times$ base \times height

$$
\begin{equation*}
=\frac{1}{2} \times \mathrm{AD} \times \mathrm{EM} \tag{i}
\end{equation*}
$$

Also, $\operatorname{ar}(\triangle \mathrm{ADE})=\frac{1}{2} \times \mathrm{AE} \times \mathrm{DN}$

$$
\begin{equation*}
\operatorname{ar}(\triangle \mathrm{BDE})=\frac{1}{2} \times \mathrm{BD} \times \mathrm{EM} \tag{ii}
\end{equation*}
$$

19. $\mathrm{A}^{\prime} \mathrm{BC}^{\prime}$ is required Δ

$$
\Delta \mathrm{A}^{\prime} \mathrm{BC}^{\prime} \sim \Delta \mathrm{ABC}
$$

$$
\begin{aligned}
\frac{A^{\prime} \mathrm{B}}{\mathrm{AB}} & =\frac{\mathrm{BC}^{\prime}}{\mathrm{BC}}=\frac{\mathrm{A}^{\prime} \mathrm{C}^{\prime}}{\mathrm{AC}} \\
& =\frac{7}{5}
\end{aligned}
$$

20. Let $h=10$; assumed mean $=a=35$

Class interval	Mid-points x_{i}	No. of persons f_{i}	$u_{i}=\frac{x_{i}-a}{h}$	$f_{i} u_{i}$
$0-10$	5	$100-90=10$	-3	-30
$10-20$	15	$90-75=15$	-2	-30
$20-30$	25	$75-50=25$	-1	-25
$30-40$	35	$50-25=25$	0	0
$40-50$	45	$25-15=10$	1	10
$50-60$	55	$15-5=10$	2	20
$60-70$	65	$5-0=5$	3	15
Total				

$$
\begin{aligned}
\therefore \quad \text { Mean } \bar{x} & =a+h \cdot\left(\frac{\Sigma f_{i} u_{i}}{\Sigma f_{i}}\right) \\
& =35+10 \times \frac{-40}{100} \\
& =35-4=31
\end{aligned}
$$

\therefore Mean age $=31$.
21. LHS $=\frac{\sin \theta}{1-\cos \theta}+\frac{\tan \theta}{1+\cos \theta}$

$$
\begin{aligned}
& =\frac{\sin \theta}{1-\cos \theta}+\frac{\sin \theta}{\cos \theta(1+\cos \theta)} \\
& =\frac{\sin \theta \cos \theta(1+\cos \theta)+\sin \theta(1-\cos \theta)}{\cos \theta(1+\cos \theta)(1-\cos \theta)}
\end{aligned}
$$

$$
=\frac{\sin \theta \cos \theta+\sin \theta \cos ^{2} \theta+\sin \theta-\sin \theta \cos \theta}{\cos \theta(1+\cos \theta)(1-\cos \theta)}
$$

$$
=\frac{\sin \theta\left(\cos ^{2} \theta+1\right)}{\cos \theta\left(1-\cos ^{2} \theta\right)}=\frac{\sin \theta\left(1+\cos ^{2} \theta\right)}{\cos \theta \cdot \sin ^{2} \theta}
$$

$$
=\frac{\left(1+\cos ^{2} \theta\right)}{\sin \theta \cos \theta}=\frac{1}{\sin \theta \cos \theta}+\frac{\cos ^{2} \theta}{\sin \theta \cos \theta}
$$

$$
=\operatorname{cosec} \theta \sec \theta+\cot \theta
$$

$=$ RHS .
OR
$\operatorname{cosec} \mathrm{A}=\sqrt{10}$

$$
\sin A=\frac{1}{\operatorname{cosec} A}=\frac{1}{\sqrt{10}}
$$

$$
\begin{aligned}
\cos \mathrm{A} & =\sqrt{1-\sin ^{2} \mathrm{~A}}=\sqrt{1-\frac{1}{10}} \\
& =\frac{3}{\sqrt{10}} \\
\tan \mathrm{~A} & =\frac{\sin \mathrm{A}}{\cos \mathrm{~A}}=\frac{1}{3} \\
\cot \mathrm{~A} & =\frac{1}{\tan \mathrm{~A}}=3 \\
\sec \mathrm{~A} & =\frac{1}{\cos \mathrm{~A}}=\frac{\sqrt{10}}{3} .
\end{aligned}
$$

22. $\cos \left(40^{\circ}+\theta\right)=\sin \left\{90^{\circ}-\left(40^{\circ}+\theta\right)\right\}$

$$
=\sin \left(50^{\circ}-\theta\right)
$$

$$
\cos 40^{\circ}=\cos \left(90^{\circ}-50^{\circ}\right)
$$

$$
=\sin 50^{\circ} .
$$

and $\sin 40^{\circ}=\sin \left(90^{\circ}-50^{\circ}\right)=\cos 50^{\circ}$ Now, given expression

$$
\begin{aligned}
& =\sin \left(50^{\circ}-\theta\right)-\sin \left(50^{\circ}-\theta\right) \\
& \quad+\frac{\sin ^{2} 50^{\circ}+\cos ^{2} 50^{\circ}}{\cos ^{2} 50+\sin ^{2} 50^{\circ}} \\
& =0+\frac{1}{1}=1 .
\end{aligned}
$$

Section-D

23. Table for values of x and y as regarding equation $3 x+y-5=0$ is

x	0	1
y	5	2

Similarly table for equation $2 x-y-5=0$ is

x	0	1
y	-5	-3

Let us draw the graph of lines using the tables obtained above.
The lines intersect y-axis at $(0,5)$ and $(0,-5)$.
24. Let original number of children $=x$

According to question $\frac{6500}{x}-\frac{6500}{x+15}=30$
$\Rightarrow \quad x^{2}+15 x-3250=0$
$\Rightarrow \quad(x+65)(x-50)=0$
$\Rightarrow x=50$ or $x=-65$ not possible
\therefore Number of children are $=50$
Moral value: Kindness and generosity.
25. Let the given quadrilateral be $A B C D$ subscribing a circle with centre O . Let the sides $A B, B C, C D$ and $D A$ touch the circle at P, Q, R and S respectively (see figure).

Join OA, OB, OC, OD, OP, OQ, OR and OS.

We need to prove
$\angle \mathrm{AOB}+\angle \mathrm{COD}=\angle \mathrm{BOC}+\angle \mathrm{DOA}=180^{\circ}$.

Proof: In $\triangle A O P$ and $\triangle A O S$,

$$
\begin{aligned}
& \mathrm{OP}=\mathrm{OS} \quad \text { (Radii of same circle) } \\
& \mathrm{AP}=\mathrm{AS}
\end{aligned}
$$

(Tangents from external points)

$$
\mathrm{AO}=\mathrm{AO}
$$

(Common)
$\therefore \quad \triangle \mathrm{AOP} \cong \triangle \mathrm{AOS}$
(SSS axiom of congruence)
$\therefore \quad \angle 1=\angle 8$
Similarly, we can prove that

$$
\angle 2=\angle 3, \angle 4=\angle 5 \text { and } \angle 6=\angle 7
$$

As, $\angle 1, \angle 2, \angle 3, \angle 4, \angle 5, \angle 6, \angle 7$ and $\angle 8$ are subtended at a point

$$
\begin{array}{r}
\therefore \angle 1+\angle 2+\angle 3+\angle 4+\angle 5+\angle 6+\angle 7+\angle 8 \\
=360^{\circ}
\end{array}
$$

$\Rightarrow \angle 1+\angle 1+\angle 2+\angle 2+\angle 5+\angle 5+\angle 6+\angle 6$

$$
=360^{\circ}
$$

Also, $\angle 8+\angle 8+\angle 3+\angle 3+\angle 4+\angle 4+\angle 7$

$$
+\angle 7=360^{\circ}
$$

[Using results from equations (i) and (ii)]
$\Rightarrow \quad 2(\angle 1+\angle 2)+2(\angle 5+\angle 6)=360^{\circ}$
Also, $\quad 2(\angle 3+\angle 4)+2(\angle 7+\angle 8)=360^{\circ}$
$\Rightarrow \quad 2 \angle \mathrm{AOB}+2 \angle \mathrm{COD}=360^{\circ}$
Also, $\quad 2 \angle \mathrm{BOC}+2 \angle \mathrm{DOA}=360^{\circ}$
$\Rightarrow \angle \mathrm{AOB}+\angle \mathrm{COD}=\angle \mathrm{BOC}+\angle \mathrm{DOA}=180^{\circ}$
Hence proved.

OR

We have,
$\mathrm{AB}=\mathrm{AP}+\mathrm{PB}=(3+6) \mathrm{cm}=9 \mathrm{~cm}$

and

$$
\begin{aligned}
A C & =A Q+Q C \\
& =(5+10) \mathrm{cm}=15 \mathrm{~cm} .
\end{aligned}
$$

$\therefore \frac{\mathrm{AP}}{\mathrm{AB}}=\frac{3}{9}=\frac{1}{3}$ and $\frac{\mathrm{AQ}}{\mathrm{AC}}=\frac{5}{15}=\frac{1}{3}$
$\Rightarrow \quad \frac{\mathrm{AP}}{\mathrm{AB}}=\frac{\mathrm{AQ}}{\mathrm{AC}}$
Thus, in triangles APQ and ABC, we have

$$
\frac{\mathrm{AP}}{\mathrm{AB}}=\frac{\mathrm{AQ}}{\mathrm{AC}} \text { and } \angle \mathrm{A}=\angle \mathrm{A}
$$

[Common]
Therefore, by SAS-criterion of similarity, we have
$\triangle \mathrm{APQ} \sim \triangle \mathrm{ABC}$
$\Rightarrow \frac{\mathrm{AP}}{\mathrm{AB}}=\frac{\mathrm{PQ}}{\mathrm{BC}}=\frac{\mathrm{AQ}}{\mathrm{AC}} \Rightarrow \frac{\mathrm{PQ}}{\mathrm{BC}}=\frac{\mathrm{AQ}}{\mathrm{AC}}$

$$
\Rightarrow \frac{\mathrm{PQ}}{\mathrm{BC}}=\frac{5}{15} \Rightarrow \frac{\mathrm{PQ}}{\mathrm{BC}}=\frac{1}{3} \Rightarrow \mathrm{BC}=3 \mathrm{PQ} .
$$

26.

Given (i) $\quad \mathrm{XX} \| \mathrm{AC}$
(ii) $\operatorname{ar}(\triangle \mathrm{BXY})=$ area of trapezium (XYCA)

To find $\frac{A X}{A B}$
As $\quad \operatorname{ar}(\triangle \mathrm{XBY})=a r$ of trapezium (AXYC)
$\Rightarrow \quad \operatorname{ar}(\triangle \mathrm{ABC})=\operatorname{ar}(\triangle \mathrm{XBY})+\operatorname{ar}(\mathrm{AXYC})$ $=a r(\triangle \mathrm{XBY})+a r \mathrm{XBY}$
$\operatorname{ar}(\triangle \mathrm{ABC})=2 \operatorname{ar}(\triangle \mathrm{XBY})$
$\Rightarrow \quad \frac{\operatorname{ar}(\triangle \mathrm{XBY})}{\operatorname{ar}(\triangle \mathrm{ABC})}=\frac{1}{2}$
Also clearly $\triangle \mathrm{XBY} \sim \triangle \mathrm{ABC}$

$$
\begin{aligned}
& \Rightarrow & \frac{\operatorname{ar}(\triangle \mathrm{XBY})}{\operatorname{ar}(\triangle \mathrm{ABC})} & =\frac{\mathrm{XB}^{2}}{\mathrm{AB}^{2}} \Rightarrow \frac{\mathrm{XB}^{2}}{\mathrm{AB}^{2}}=\frac{1}{2} \\
& \Rightarrow & & \frac{\mathrm{XB}}{\mathrm{AB}}
\end{aligned}=\frac{1}{\sqrt{2}} \Rightarrow \frac{\mathrm{AB}-\mathrm{AX}}{\mathrm{AB}}=\frac{1}{\sqrt{2}}{ }^{\Rightarrow} \quad \begin{array}{rlrl}
\sqrt{2} & & \frac{1}{\sqrt{2}} & =\frac{\mathrm{AB}}{\mathrm{AB}}-\frac{\mathrm{AX}}{\mathrm{AB}} \\
\Rightarrow & & \frac{\mathrm{AX}}{\mathrm{AB}} & =1-\frac{1}{\sqrt{2}} \\
& & =\frac{\sqrt{2}-1}{\sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}}
\end{array}
$$

$$
\begin{aligned}
& =\frac{2-\sqrt{2}}{2} \\
\Rightarrow \quad \frac{\mathrm{AX}}{\mathrm{AB}} & =\frac{2-\sqrt{2}}{2} .
\end{aligned}
$$

27. Let $A B=50 \mathrm{~m}$

$$
\mathrm{CD}=h \text { (height of pole) }
$$

\therefore In right $\triangle \mathrm{ABD}$;

$$
\begin{aligned}
\cot 45^{\circ} & =\frac{\mathrm{BD}}{\mathrm{AB}} \\
\Rightarrow \quad 1 & =\frac{\mathrm{BD}}{50} \Rightarrow \mathrm{BD}=50 \mathrm{~m}
\end{aligned}
$$

Also $\mathrm{AE}=\mathrm{AB}-\mathrm{EB}=(50-h) \mathrm{m}$
In right $\angle \triangle \mathrm{AEC} ; \tan 30^{\circ}=\frac{\mathrm{AE}}{\mathrm{EC}}$
$\Rightarrow \quad \frac{1}{\sqrt{3}}=\frac{50-h}{E C}$
$\Rightarrow \quad \mathrm{EC}=(50-h) \sqrt{3}=\mathrm{BD}$
$\therefore \quad 50=(50-h) \sqrt{3}$
$\Rightarrow \quad h=\frac{50 \sqrt{3}-50}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}}$
$=\frac{50(\sqrt{3}-1)}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}}$
$\Rightarrow \quad h=\frac{50(3-\sqrt{3})}{3}=\frac{50 \times 1.27}{3}$
$=21.166 \mathrm{~m}$
OR
Let the tower be BC the flagstaff be $A B$ and the point on the plane be P .
Let $\mathrm{BC}=h$

In right-angled $\triangle \mathrm{BCP}$,

$$
\begin{align*}
\tan 30^{\circ} & =\frac{h}{\mathrm{PC}} \\
\Rightarrow \quad \mathrm{PC} & =h \cot 30^{\circ} \tag{i}
\end{align*}
$$

In right-angled $\triangle \mathrm{ACP}$,

$$
\begin{align*}
\tan 60^{\circ} & =\frac{5+h}{P C} \\
\Rightarrow \quad P C & =(5+h) \cot 60^{\circ} \tag{ii}
\end{align*}
$$

Comparing equations (i) and (ii), we have $h \cot 30^{\circ}=(5+h) \cot 60^{\circ}$

$$
\begin{aligned}
\Rightarrow & & h \sqrt{3} & =(5+h) \frac{1}{\sqrt{3}} \\
\Rightarrow & & 3 h & =5+h \\
\Rightarrow & & h & =2.5
\end{aligned}
$$

Hence, the height of the tower is 2.5 m .
28. Le $r=$ radius of base and $h=$ height of cylinder
$\therefore r=4.2 \mathrm{~cm}, h=12 \mathrm{~cm}$
TSA $=$ CSA of cylinder + CSA of two hemisphere

$$
\begin{aligned}
& =2 \pi \mathrm{r} h+2 \times\left(2 \pi r^{2}\right) \\
& =2 \pi r(h+2 r) \\
& =2 \times \frac{22}{7} \times 4.2(12+2 \times 4.2) \\
& =538.56 \mathrm{~cm}^{2}
\end{aligned}
$$

Volume of article $=$ Volume of cylinder Volume of two hemisphere

$$
\begin{aligned}
& =\pi r^{2} h-2 \times\left(\frac{2}{3} \pi r^{3}\right) \\
& =\pi r^{2}\left(h-\frac{4}{3} r\right) \\
& =\frac{22}{7} \times(4.2)^{2}\left(12-\frac{4}{3} \times 4.2\right) \\
& =354.816 \mathrm{~cm}^{3} .
\end{aligned}
$$

29. Let $r=$ radius of lower end $\mathrm{R}=$ radius of upper end
$\mathrm{V}_{2}=$ Volume of bigger sphere as density of metal $=\frac{\text { mass }}{\text { volume }}$

$$
\therefore \quad=\frac{1}{36 \pi}
$$

\Rightarrow Volume of bigger sphere \times density $=$ Mass

$$
=\frac{\text { Mass }}{\text { density }}=\frac{7}{\left(\frac{1}{36} \pi\right)}
$$

$\therefore \quad \mathrm{V}_{2}=252 \pi \mathrm{~cm}^{3}$
Now, let $V=$ Volume of new sphere

$$
\begin{aligned}
\therefore \quad \mathrm{V} & =\mathrm{V}_{1}+\mathrm{V}_{2} \\
& =36 \pi+252 \pi
\end{aligned}
$$

$$
\frac{4}{3} \pi \mathrm{R}^{3}=288 \pi
$$

$$
\Rightarrow \quad \mathrm{R}^{3}=\frac{288 \times 3}{4}=72 \times 3=216
$$

$$
\Rightarrow \quad \mathrm{R}=6 \mathrm{~cm}
$$

$\therefore \quad$ Diameter $=12 \mathrm{~cm}$.
30. Let us rewrite the table with class intervals.

Class interval	f	$c f$
$36-38$	0	0
$38-40$	3	3
$40-42$	2	5
$42-44$	4	9
$44-46$	5	14
$46-48$	14	28
$48-50$	4	32
$50-52$	3	35
	$\mathrm{~N}=35$	

We mark the upper class limits on x-axis and cumulative frequencies on y-axis with a suitable scale.

We plot the points $(38,0) ;(40,3)$; $(42,5)$; $(44,9) ;(46,14) ;(48,28) ;(50,32)$ and $(52$, 35).

These points are joined by a free hand smooth curve to obtain a less than type
ogive as shown in the given figure.

Fig.: Less than type ogive
To obtain median from the graph:
We first locate the point corresponding to $\frac{\mathrm{N}}{2}=\frac{35}{2}=17.5$ students on the y-axis.

From this point, draw a line parallel to the x-axis to cut the curve at P . From the point P , draw a perpendicular PQ on the x-axis to meet it at Q . The x-coordinate of Q is 46.5 . Hence, the median is 46.5 kg .
Let us verify this median using the formula.

$$
\begin{aligned}
\text { Median } & =l+\left(\frac{\frac{N}{2}-c f}{f}\right) \times h \\
& =46+\left(\frac{17.5-14}{14}\right) \times 2 \\
& =46+\frac{7}{14} \\
& =46+0.5 \\
& =46.5 \mathrm{~kg} .
\end{aligned}
$$

Thus, the median is the same in both methods.

Practice Paper-5

Section-A

1. $\operatorname{LCM}(p, q)=x^{3} y^{2} z^{3}$.
2. Let one zero be α, then the other one will be $\frac{1}{\alpha}$.

$$
\begin{aligned}
\text { So, } & & \alpha \cdot \frac{1}{\alpha} & =\frac{4 a}{a^{2}+4} \\
& \Rightarrow & a^{2}-4 a+4 & =0 \\
& \Rightarrow & (a-2)^{2} & =0 \\
\Rightarrow & & a & =2 .
\end{aligned}
$$

3. Given vertices are:
$\mathrm{A}(-3,0), \mathrm{B}(5,-2)$ and $\mathrm{C}(-8,5)$.
We know that centroid G is

$$
\begin{aligned}
& \left(\frac{x_{1}+x_{2}+x_{3}}{3}, \frac{y_{1}+y_{2}+y_{3}}{3}\right) \\
& \therefore \quad \text { Centroid }
\end{aligned}=\left(\frac{-3+5-8}{3}, \frac{0-2+5}{3}\right) .
$$

4. Try yourself
5. Let us rewrite the given distribution in the other manner

Marks	No. of students
$0-10$	3
$10-20$	9
$20-30$	15
$30-40$	30
$40-50$	18
$50-60$	5

Clearly, the modal class is 30-40.
6. Total balls $=5+8+4+7=24$

Let
$\mathrm{G}=$ getting a green ball
Total green ball $=4$.

$$
\begin{array}{lr}
\therefore & P(G)=\frac{4}{24}=\frac{1}{6} \\
\therefore & P(\text { not } G)=1-\frac{1}{6}=\frac{5}{6} .
\end{array}
$$

Section-B

7. $7 \times 5 \times 3 \times 2+3=3(7 \times 5 \times 2+1)$

$$
=3(70+1)=3 \times 71 .
$$

This is the product of primes.
By Fundamental theorem of arithmetic, every composite number can be expressed as the product of primes.
$\therefore 7 \times 5 \times 3 \times 2+3$ is a composite number.
8. nth term is: $a_{n}=3+2 n$

This is an A.P.

$$
\begin{aligned}
& \text { First term }=a_{1}=3+2(1)=5 \\
& 24 \text { th term }=a_{24}=3+2(24)=51
\end{aligned}
$$

Now, sum of first 24 terms:

$$
\begin{aligned}
\mathrm{S}_{24} & =\frac{24}{2}\left(a_{1}+a_{24}\right)=12 \times(5+51) \\
& =12 \times 56=672 .
\end{aligned}
$$

9. Let the ratio be $\lambda: 1$.

Let use section formula.

$$
\begin{aligned}
& & \frac{3}{5} & =\frac{1 \times 3+\lambda(-3)}{\lambda+1} \\
& \Rightarrow & 3 \lambda+3 & =15-15 \lambda \\
\Rightarrow & & 18 \lambda & =12 \Rightarrow \lambda=\frac{2}{3} \\
& \therefore & \lambda: 1 & =2: 3
\end{aligned}
$$

Thus, the required ratio is $2: 3$.
10. $\cot \theta=\frac{15}{8}$
[Given]

$$
\text { Now, } \begin{aligned}
& \frac{(2+2 \sin \theta)(1-\sin \theta)}{(1+\cos \theta)(2-2 \cos \theta)} \\
&=\frac{2(1+\sin \theta)(1-\sin \theta)}{(1+\cos \theta) 2(1-\cos \theta)} \\
&=\frac{1-\sin ^{2} \theta}{1-\cos ^{2} \theta}=\frac{\cos ^{2} \theta}{\sin ^{2} \theta} \\
&= \cot ^{2} \theta=\left(\frac{15}{8}\right)^{2}=\frac{225}{64} .
\end{aligned}
$$

11. ACB is the minor segment of a circle with centre O and radius $\mathrm{OA}=\mathrm{OB}=r=14 \mathrm{~m}$ Join AB.
In $\triangle \mathrm{OAB}$,
$\mathrm{OA}=\mathrm{OB}$
(Radii of same circle)

$$
\begin{equation*}
\Rightarrow \quad \angle 2=\angle 1 \tag{i}
\end{equation*}
$$

(Angles opposite to equal sides)
$\therefore \quad \angle 1+\angle 2+60^{\circ}=180^{\circ}$
(Angle sum property for a triangle)
$\Rightarrow \quad \angle 1+\angle 1+60^{\circ}=180^{\circ}$
[Using (i)]
$\Rightarrow \quad \angle 1=\angle 2=60^{\circ}$
[Using (i)]
$\Rightarrow \Delta \mathrm{AOB}$ is equilateral

$\therefore \quad \operatorname{ar}(\triangle \mathrm{AOB}) \frac{\sqrt{3}}{4} r^{2}=\frac{\sqrt{3}}{4} \times 14^{2}$

$$
=49 \sqrt{3} \mathrm{~m}^{2}
$$

$\operatorname{ar}($ sector AOBC$)=\pi r^{2} \times \frac{60^{\circ}}{360^{\circ}}$

$$
=\frac{22}{7} \times 14 \times 14 \times \frac{1}{6}
$$

Now, ar(segment ACB)

$$
=\frac{308}{3} \mathrm{~m}^{2}
$$

$$
\begin{aligned}
& =\operatorname{ar}(\text { sector } \mathrm{AOBC})-\operatorname{ar}(\triangle \mathrm{AOB}) \\
& =\left(\frac{308}{3}-49 \sqrt{3}\right) \mathrm{m}^{2}
\end{aligned}
$$

12. Sample space is:
$\mathrm{S}=\{\mathrm{HHH}, \mathrm{HHT}, \mathrm{HTH}, \mathrm{HTT}, \mathrm{THH}, \mathrm{THT}$,

TTH, TTT $\}$
$\therefore \quad n(s)=8$
(i) Let $\mathrm{E}=$ getting at least 2 heads

$$
=\{\mathrm{THH}, \mathrm{HTH}, \mathrm{HHT}, \mathrm{HHH}\}
$$

$\therefore \quad n(\mathrm{E})=4$
$\therefore \mathrm{P}(\mathrm{E})=\frac{4}{8}=\frac{1}{2}$.
(ii) Let $\mathrm{F}=$ getting at most 2 heads

$$
\begin{aligned}
& \therefore \quad \mathrm{F}= \\
& =\{\text { HTT, TTH, THT, HTT, HHT, } \\
& \\
& \therefore n(\mathrm{~F})=7 \therefore \mathrm{P}(\mathrm{~F})=\frac{7}{8} .
\end{aligned}
$$

Section-C

13. Let if possible that $\sqrt{5}-3 \sqrt{2}$ is rational number
and let $\sqrt{5}-3 \sqrt{2}=x$; where x is rational

$$
\Rightarrow \quad \sqrt{5}=x+3 \sqrt{2}
$$

Squaring both sides, we get

$$
\begin{array}{lr}
\Rightarrow & 5=x^{2}+18+6 x \sqrt{2} \\
\Rightarrow & -6 x \sqrt{2}=x^{2}+18-5 \\
\Rightarrow & \sqrt{2}=\frac{x^{2}+13}{-6 x} \tag{i}
\end{array}
$$

Clearly RHS of (i) above is rational number but $\sqrt{2}$ is irrational so our assumption leads to a contradiction.
Hence $\sqrt{5}-3 \sqrt{2}$ is irrational.
14. According to the division algorithm,

$$
\begin{aligned}
p(x) & =g(x) \times q(x)+r(x) \\
\Rightarrow \quad x^{3}-3 x^{2}+x+2 & =g(x) \times(x-2) \\
& +(-2 x+4)
\end{aligned}
$$

(As given in question)

$$
\Rightarrow \quad g(x)=\frac{x^{3}-3 x^{2}+3 x-2}{x-2}
$$

To find $g(x)$, we proceed as given below.

$$
\begin{gathered}
x - 2 \longdiv { x ^ { 2 } - x + 1 } \begin{array} { r }
{ x ^ { 3 } - 3 x ^ { 2 } + 3 x - 2 } \\
{ \frac { - x ^ { 3 } - 2 x ^ { 2 } } { - x ^ { 2 } + 3 x - 2 } } \\
{ \frac { - x ^ { 2 } + 2 x } { + } } \\
{ \frac { x - 2 } { x - 2 } } \\
{ \frac { - \quad + } { 0 } }
\end{array}
\end{gathered}
$$

Thus, $g(x)=x^{2}-x+1$.
15. Let the first term and common difference of first A.P. be A and D respectively and that of the second A.P. be a and d respectively.

$$
\begin{aligned}
& \frac{\frac{n}{2}[2 \mathrm{~A}+(n-1) \mathrm{D}]}{\frac{n}{2}[2 a+(n-1) d]}=\frac{7 n+1}{4 n+27} \\
\Rightarrow \quad & \frac{2 \mathrm{~A}+(n-1) \mathrm{D}}{2 a+(n-1) d}=\frac{7 n+1}{4 n+27} \\
\Rightarrow \quad & \frac{\mathrm{~A}+\left(\frac{n-1}{2}\right) \mathrm{D}}{a+\left(\frac{n-1}{2}\right) d}=\frac{7 n+1}{4 n+27}
\end{aligned}
$$

To get $5^{\text {th }}$ term of an A.P. the coefficient of common difference should be 4
$\therefore \quad$ we should put $\frac{n-1}{2}=4$, i.e., $n=9$.
Therefore,

$$
\frac{\mathrm{A}+4 \mathrm{D}}{a+4 d}=\frac{7 \times 9+1}{4 \times 9+27}
$$

$$
\Rightarrow \quad \frac{\mathrm{A}_{5}}{a_{5}}=\frac{64}{63}
$$

Hence, the required ratio is $64: 63$.
OR

Let the first term be a and the common difference be d.

$$
\text { A.P. }=a, a+d, a+2 d, \ldots
$$

According to question,

$$
\begin{array}{rlrlrl}
& & \mathrm{T}_{3} & \left.=16 \text { and } \begin{array}{rl}
\mathrm{T}_{7} & =12+\mathrm{T}_{5} \\
& \Rightarrow \\
& a+2 d
\end{array}\right)=16 \text { and } a+6 d & =12+a+4 d \\
\Rightarrow & a+2 d & =16 & \text { and } & d & =6 \\
\Rightarrow & & a & =4 \text { and } & d & =6
\end{array}
$$

So, the required A.P. will be $4,10,16, \ldots . .$.
16. Rewriting the given system of linear equations, we have

$$
\begin{aligned}
& 2 a x+3 b y-(a+2 b)=0 \\
& 3 a x+2 b y-(2 a+b)=0
\end{aligned}
$$

By cross-multiplication,

$$
\begin{aligned}
& \frac{x}{-3 b(2 a+b)+2 b(a+2 b)} \\
&=\frac{-y}{-2 a(2 a+b)+3 a(a+2 b)}
\end{aligned}
$$

$$
\begin{aligned}
&=\frac{1}{2 a \times 2 b-3 a \times 3 b} \\
& \Rightarrow \frac{x}{-6 a b-3 b^{2}+2 a b+4 b^{2}} \\
&=\frac{-y}{-4 a^{2}-2 a b+3 a^{2}+6 a b} \\
&=\frac{1}{4 a b-9 a b} \\
& \Rightarrow \quad \frac{x}{b^{2}-4 a b}=\frac{-y}{4 a b-a^{2}}=\frac{1}{-5 a b} \\
& \text { (i) (ii) }
\end{aligned}
$$

Taking (i) and (iii), we get

$$
x=\frac{4 a b-b^{2}}{5 a b}=\frac{4 a-b}{5 a}
$$

Taking (ii) and (iii), we get

$$
\begin{aligned}
& y=\frac{4 a b-a^{2}}{5 a b}=\frac{4 b-a}{5 b} . \\
& \text { OR }
\end{aligned}
$$

The given system of equations can be written as

$$
\begin{aligned}
a x+b y-(a-b) & =0 ; \\
a_{1} & =a, b_{1}=b ; c_{1}=-(a-b) \\
b x-a y-(a+b) & =0 ; \\
a_{2} & =b, b_{2}=-a ; c_{2}=-(a+b)
\end{aligned}
$$

By cross-multiplication,

$$
\frac{x}{-b(a+b)-a(a-b)}=\frac{-y}{-a(a+b)+b(a-b)}
$$

(i)
(ii)

$$
=\frac{1}{-a^{2}-b^{2}}
$$

(iii)

Taking (i) and (iii), we get

$$
x=\frac{-a b-b^{2}-a^{2}+a b}{-a^{2}-b^{2}}=1
$$

Taking (ii) and (iii), we get

$$
y=\frac{-a^{2}-a b+a b-b^{2}}{-a^{2}-b^{2}}=-1
$$

Hence $x=1, y=-1$ is the solution of the given system of equations.
17.

Area of $\triangle A B C$

$$
\begin{aligned}
& =\left|\frac{1}{2}\left[x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+x_{3}\left(y_{1}-y_{2}\right)\right]\right| \\
& \Rightarrow 15=\frac{1}{2}[1(p-7)+4(7+3)+(-9)(-3-p)] \\
& \Rightarrow \quad 30=[p-7+40+27+9 p] \\
& \Rightarrow \quad 30=[10 p+60] \Rightarrow 10 p=-30 \\
& \Rightarrow \quad p=-3 .
\end{aligned}
$$

OR

Area of triangle

$$
\begin{aligned}
& =\left|\frac{1}{2}\left[x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+x_{3}\left(y_{1}-y_{2}\right)\right]\right| \\
& =\left|\frac{1}{2}[2(0+4)-1(-4-3)+2(3-0)]\right| \\
& =\frac{1}{2}[8+7+6]=\frac{21}{2} \text { sq. units. }
\end{aligned}
$$

18. Let $A B C D$ be a rhombus Since, diagonals of a rhombus bisect each other at right angles,

$$
\begin{aligned}
\therefore \quad \mathrm{AO} & =\mathrm{CO}, \\
\mathrm{BO} & =\mathrm{DO}, \\
\angle \mathrm{AOD} & =\angle \mathrm{DOC} \\
& =\angle \mathrm{COB}=\angle \mathrm{BOA}=90^{\circ}
\end{aligned}
$$

Now, in $\triangle A O D$

$$
\begin{array}{ll}
& \mathrm{AD}^{2}=\mathrm{AO}^{2}+\mathrm{OD}^{2} \\
\text { Similarly, } & \mathrm{DC}^{2}=\mathrm{DO}^{2}+\mathrm{OC}^{2} \\
& \mathrm{CB}^{2}=\mathrm{CO}^{2}+\mathrm{BO}^{2} \\
\text { and } & \mathrm{BA}^{2}=\mathrm{BO}^{2}+\mathrm{AO}^{2} \tag{iv}
\end{array}
$$

Adding equations (i), (ii), (iii) and (iv), we have

$$
\begin{aligned}
& \mathrm{AD}^{2}+\mathrm{DC}^{2}+\mathrm{CB}^{2}+\mathrm{BA}^{2} \\
& \quad=2\left(\mathrm{DO}^{2}+\mathrm{CO}^{2}+\mathrm{BO}^{2}+\mathrm{AO}^{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =2\left(\frac{\mathrm{BD}^{2}}{4}+\frac{\mathrm{AC}^{2}}{4}+\frac{\mathrm{BD}^{2}}{4}+\frac{\mathrm{CA}^{2}}{4}\right) \\
& =\mathrm{BD}^{2}+\mathrm{CA}^{2} . \quad \text { Hence proved }
\end{aligned}
$$

19. Steps of construction:
20. Draw a $\triangle \mathrm{ABC}$ in which $\mathrm{AB}=5 \mathrm{~cm}, \mathrm{BC}$ $=6 \mathrm{~cm}$ and $A C=4 \mathrm{~cm}$.
21. Make any acute $\angle C B X$.
22. With suitable distances divide $\mathrm{BB}_{1}=\mathrm{B}_{1} \mathrm{~B}_{2}$ $=B_{2} B_{3}$.
23. Join $B_{2} C$.
24. Draw $\mathrm{B}_{2} \mathrm{C}^{\prime} \|$ to $\mathrm{B}_{3} \mathrm{C}$.
25. Draw $\mathrm{C}^{\prime} \mathrm{A}^{\prime} \|$ to CA .

26. $\Delta \mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime}$ is the required triangle whose side is $\frac{2}{3}$ of the corresponding sides of given $\triangle \mathrm{ABC}$.
27.

C.I.	Frequency $\left(f_{i}\right)$	Mid value $\left(x_{i}\right)$	$f_{i} x_{i}$
$0-10$	2	5	10
$10-20$	3	15	45

20-30	5	25	125
30-40	3	35	105
40-50	p	45	$45 p$
	$\Sigma f_{i}=13+p$		$=285$

Mean $\bar{x}=25$
[Given]

Using the formula:

$$
\begin{aligned}
& \bar{x}=\frac{\sum f_{i} x_{i}}{\sum f_{i}} \\
& \Rightarrow \quad 25=\frac{285+45 p}{13+p} \\
& \Rightarrow 25(13+p)=285+45 p \\
& \Rightarrow \quad 325+25 p=285+45 p \\
& \Rightarrow \quad 325-285=45 p-25 p \\
& \Rightarrow \quad 40=20 p \Rightarrow \quad p=\frac{40}{20} \\
& \Rightarrow \quad p=2 \text {. }
\end{aligned}
$$

21. $7 \sin ^{2} \theta+3\left(1-\sin ^{2} \theta\right)=4$

Let $\quad \sin \theta=x$
$\therefore \quad 7 x^{2}+3-3 x^{2}=4$
$\Rightarrow 4 x^{2}=1 \Rightarrow x^{2}=\frac{1}{4}$
$\Rightarrow \quad x= \pm \frac{1}{2}$
$\therefore \quad \sin \theta=\frac{1}{2}$
or $\quad \sin \theta=\frac{-1}{2}$
$\sin \theta=-\frac{1}{2}$ is not possible as θ is acute.
$\Rightarrow \quad \operatorname{cosec} \theta=2$

$$
\cos \theta=\frac{\sqrt{3}}{2}
$$

$\therefore \quad \sec \theta+\operatorname{cosec} \theta=\frac{2}{\sqrt{3}}+2$.
Hence proved
OR
LHS $=\frac{\cot A-\cos A}{\cot A+\cos A}=\frac{\frac{\cos A}{\sin A}-\cos A}{\frac{\cos A}{\sin A}+\cos A}$

$$
\begin{aligned}
& =\frac{\cos A\left(\frac{1}{\sin A}-1\right)}{\cos A\left(\frac{1}{\sin A}+1\right)}=\frac{\frac{1}{\sin A}-1}{\frac{1}{\sin A}+1} \\
& =\frac{\operatorname{cosec} A-1}{\operatorname{cosec} A+1}=\text { RHS }
\end{aligned}
$$

22. Given expression

$$
\begin{aligned}
& =8 \sqrt{3} \operatorname{cosec}^{2} 30^{\circ} \cdot \sin 60^{\circ} \cdot \cos 60^{\circ} \cdot \cos ^{2} 45^{\circ} \text {. } \\
& \sin 45^{\circ} \cdot \tan 30^{\circ} \cdot \operatorname{cosec}^{3} 45^{\circ} . \\
& =8 \sqrt{3} \times \frac{1}{\sin ^{2} 30^{\circ}} \cdot \sin \left(90^{\circ}-30^{\circ}\right) \text {. } \\
& \cos \left(90^{\circ}-30^{\circ}\right) \cos ^{2}\left(90^{\circ}-45^{\circ}\right) \cdot \sin 45^{\circ} . \\
& \frac{\sin 30^{\circ}}{\cos 30^{\circ}} \cdot \frac{1}{\sin ^{3} 45^{\circ}} \\
& =8 \sqrt{3} \times \frac{1}{\sin ^{2} 30^{\circ}} \times \cos 30^{\circ} \cdot \sin 30^{\circ} \cdot \sin ^{2} 45^{\circ} \text {. } \\
& \sin 45^{\circ} \cdot \frac{\sin 30^{\circ}}{\cos 30^{\circ}} \times \frac{1}{\sin ^{3} 45^{\circ}} \\
& =8 \sqrt{3} \times\left(\frac{\sin 30^{\circ} \cdot \sin 30^{\circ}}{\sin ^{2} 30^{\circ}}\right) \times \frac{\cos 30^{\circ}}{\cos 30^{\circ}} \\
& \times \frac{\sin ^{2} 45^{\circ} \sin 45^{\circ}}{\sin ^{3} 45^{\circ}} \\
& =8 \sqrt{3} \times 1 \times 1 \times 1=8 \sqrt{3} \text {. }
\end{aligned}
$$

Section-D

23. Tables for equations $3 x+y-11=0$ and $x-y-1=0$ are respectively

x	3	4
y	2	-1

and

x	0	4
y	-1	3

Let us draw the graph.
From the graph, it is clear that the lines intersect each other at a point $\mathrm{A}(3,2)$. So the solution is $x=3, y=2$.
The line $3 x+y-11=0$ intersects the y-axis at $\mathrm{B}(0,11)$ and the line $x-y-1=0$ intersects the
y-axis at $C(0,-1)$. Draw the perpendicular AM from A on the y-axis to intersect it at M.

Now, in $\triangle \mathrm{ABC}$,
base $B C=11+1=12$ units,
height $\mathrm{AM}=3$ units.

$$
\begin{aligned}
\therefore \quad \operatorname{ar}(\triangle \mathrm{ABC}) & =\frac{1}{2} \times \text { base } \times \text { height } \\
& =\frac{1}{2} \times 12 \times 3 \\
& =18 \text { sq. units }
\end{aligned}
$$

Hence, $x=3, y=2$; area $=18$ sq. units..
24. Let the time taken to fill the tank by only the larger tap be x hours.
Then the same time by the smaller tap $=$ $(x+10)$ hours.
The part of the tank filled by only the larger tap in 1 hour $=\frac{1}{x}$
The part of the tank filled by only the smaller tap in 1 hour $=\frac{1}{x+10}$
So the part of the tank filled by both the taps together in 1 hour $=\frac{1}{x}+\frac{1}{x+10}$
But this is given to be $\frac{1}{9 \frac{3}{8}}$,i.e., $\frac{8}{75}$
$x \neq-\frac{25}{4}$ as time cannot be negative

$$
\therefore \quad x=15 \text { hours }
$$

$$
\therefore \quad x+10=25 \text { hours. }
$$

Thus, the larger tap and the smaller tap can fill the tank in 15 hours and 25 hours respectively.

OR

Consider $\triangle \mathrm{ABC} ; \angle \mathrm{B}=90^{\circ}$
\therefore Hypotenuse AC $=3 \sqrt{10} \mathrm{~cm}$
Let smaller side $=x=\mathrm{AB}$
and longer leg $=B C$.

$$
\begin{array}{lrl}
\therefore & \mathrm{As} \mathrm{Hyp}^{2}= & \mathrm{AB}^{2}+\mathrm{BC}^{2} \\
\Rightarrow & (3 \sqrt{10})^{2} & =x^{2}+\mathrm{BC}^{2} \\
\Rightarrow & \mathrm{BC}^{2}=90-x^{2} \\
& B C=\sqrt{90-x^{2}} \\
\therefore & \text { longer leg }=\sqrt{90-x^{2}}
\end{array}
$$

Now, new smaller leg $=3 x$
and

$$
\text { new longer leg }=2 \sqrt{90-x^{2}}
$$

$$
\begin{aligned}
& \text { Therefore, } \quad \frac{1}{x}+\frac{1}{x+10}=\frac{8}{75} \\
& \Rightarrow \quad \frac{x+10+x}{x(x+10)}=\frac{8}{75} \\
& \Rightarrow \quad 75(2 x+10)=8 x^{2}+80 x \\
& \Rightarrow \quad 8 x^{2}-70 x-750=0 \\
& \Rightarrow \quad 4 x^{2}-35 x-375=0 \\
& \Rightarrow \quad 4 x^{2}-60 x+25 x-375=0 \\
& \Rightarrow \quad 4 x(x-15)+25(x-15)=0 \\
& \Rightarrow \quad(4 x+25)(x-15)=0 \\
& \Rightarrow \quad x=-\frac{25}{4} \text { or } x=15
\end{aligned}
$$

New hypotenuse $=9 \sqrt{5} \mathrm{~cm}$
$\therefore \quad$ Again using Pythagoras theorem, we get

$$
\text { longer leg } \sqrt{90-9}=\sqrt{81}=9 \mathrm{~cm}
$$

25. Let the given parallelogram be $A B C D$ whose sides touches a circles at P, Q, R and S as shown in the adjoining figure.
Since, length of two tangents drawn from
 an external point to a circle are equal.

$$
\begin{equation*}
\therefore \quad \mathrm{AP}=\mathrm{AS} \tag{i}
\end{equation*}
$$

Similarly, we have

$$
\begin{align*}
\mathrm{PB} & =\mathrm{BQ} \tag{ii}\\
\mathrm{DR} & =\mathrm{SD} \tag{iii}\\
\mathrm{RC} & =\mathrm{QC} \tag{iv}
\end{align*}
$$

Adding these four equations, we have

Hence, ABCD is a rhombus.

$$
\begin{aligned}
& A P+P B+D R+R C=A S+B Q+S D+Q C \\
& \Rightarrow(\mathrm{AP}+\mathrm{PB})+(\mathrm{DR}+\mathrm{RC}) \\
& =(A S+S D)+(B Q+Q C) \\
& \Rightarrow \quad \mathrm{AB}+\mathrm{DC}=\mathrm{AD}+\mathrm{BC} \\
& \because \quad \mathrm{AB}=\mathrm{DC} \text { and } \mathrm{AD}=\mathrm{BC} \\
& \text { (ABCD is a parallelogram) } \\
& \therefore \quad \mathrm{AB}=\mathrm{BC} \\
& \text { Thus, } \quad \mathrm{AB}=\mathrm{BC}=\mathrm{CD}=\mathrm{DA}
\end{aligned}
$$

$$
\begin{aligned}
& (9 \sqrt{5})^{2}=(3 x)^{2}+\left(2 \sqrt{90-x^{2}}\right)^{2} \\
& \Rightarrow \quad 405=9 x^{2}+4\left(90-x^{2}\right) \\
& \Rightarrow \quad 405=9 x^{2}+360-4 x^{2} \\
& \Rightarrow \quad 5 x^{2}=45 \\
& \Rightarrow \quad x^{2}=9 \\
& \Rightarrow \quad x^{2}-9=0 \\
& \Rightarrow \quad(x-3)(x+3)=0 \\
& \Rightarrow \quad x=3 \text { or } x=-3 \\
& \therefore \quad \text { Smaller leg }=3 \mathrm{~cm}
\end{aligned}
$$

OR

We have,

$$
\mathrm{AB}=\mathrm{AP}+\mathrm{PB}=(3+6) \mathrm{cm}=9 \mathrm{~cm}
$$

and

$$
\mathrm{AC}=\mathrm{AQ}+\mathrm{QC}
$$

$$
=(5+10) \mathrm{cm}=15 \mathrm{~cm} .
$$

$\therefore \frac{\mathrm{AP}}{\mathrm{AB}}=\frac{3}{9}=\frac{1}{3}$ and $\frac{\mathrm{AQ}}{\mathrm{AC}}=\frac{5}{15}=\frac{1}{3}$
$\Rightarrow \quad \frac{A P}{A B}=\frac{A Q}{A C}$
Thus, in triangles APQ and ABC, we have

$$
\frac{\mathrm{AP}}{\mathrm{AB}}=\frac{\mathrm{AQ}}{\mathrm{AC}} \text { and } \angle \mathrm{A}=\angle \mathrm{A}
$$

[Common]
Therefore, by SAS-criterion of similarity, we have
$\triangle \mathrm{APQ} \sim \triangle \mathrm{ABC}$

$$
\begin{aligned}
& \Rightarrow \frac{\mathrm{AP}}{\mathrm{AB}}=\frac{\mathrm{PQ}}{\mathrm{BC}}=\frac{\mathrm{AQ}}{\mathrm{AC}} \Rightarrow \frac{\mathrm{PQ}}{\mathrm{BC}}=\frac{\mathrm{AQ}}{\mathrm{AC}} \\
& \Rightarrow \frac{\mathrm{PQ}}{\mathrm{BC}}=\frac{5}{15} \Rightarrow \frac{\mathrm{PQ}}{\mathrm{BC}}=\frac{1}{3} \Rightarrow \mathrm{BC}=3 \mathrm{PQ} .
\end{aligned}
$$

26. Statement: In a triangle, if square of the largest side is equal to the sum of the squares of the other two sides, then the angle opposite to the largest side is a right angle.
Proof: We are given a triangle $\mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime}$ with

$$
\begin{equation*}
A^{\prime} \mathrm{C}^{\prime 2}=\mathrm{A}^{\prime} \mathrm{B}^{\prime 2}+\mathrm{B}^{\prime} \mathrm{C}^{\prime 2} \tag{i}
\end{equation*}
$$

We have to prove that $\angle \mathrm{B}^{\prime}=90^{\circ}$
Let us construct a $\triangle \mathrm{PQR}$ with $\angle \mathrm{Q}=90^{\circ}$ such that

$$
\begin{equation*}
\mathrm{PQ}=\mathrm{A}^{\prime} \mathrm{B}^{\prime} \text { and } \mathrm{QR}=\mathrm{B}^{\prime} \mathrm{C}^{\prime} \tag{ii}
\end{equation*}
$$

mATHEMATICS-X

In $\triangle P Q R$,

$$
\begin{align*}
\mathrm{PR}^{2}= & \mathrm{PQ}^{2}+\mathrm{QR}^{2} \\
& \quad \text { (Pythagoras Theorem) } \\
= & \mathrm{A}^{\prime} \mathrm{B}^{\prime 2}+\mathrm{B}^{\prime} \mathrm{C}^{\prime 2} \tag{iii}
\end{align*}
$$

[From (ii)]
But $\quad \mathrm{A}^{\prime} \mathrm{C}^{\prime 2}=\mathrm{A}^{\prime} \mathrm{B}^{\prime 2}+\mathrm{B}^{\prime} \mathrm{C}^{\prime 2}$
[From (i)]
From equations (iii) and (iv), we have

$$
\begin{align*}
\mathrm{PR}^{2} & =\mathrm{A}^{\prime} \mathrm{C}^{\prime 2} \\
\Rightarrow \quad \mathrm{PR} & =\mathrm{A}^{\prime} \mathrm{C}^{\prime} \tag{v}
\end{align*}
$$

Now, in $\triangle \mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime}$ and $\triangle \mathrm{PQR}$,

$$
\begin{aligned}
\mathrm{A}^{\prime} \mathrm{B}^{\prime} & =\mathrm{PQ} \\
\mathrm{~B}^{\prime} \mathrm{C}^{\prime} & =\mathrm{QR} \\
\mathrm{~A}^{\prime} \mathrm{C}^{\prime} & =\mathrm{PR}
\end{aligned}
$$

[From (ii)]
[From (ii)]
[From (v)]
Therefore, $\Delta \mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime} \cong \triangle \mathrm{PQR}$
(SSS congruence rule)
$\Rightarrow \quad \angle B^{\prime}=\angle Q$
(СРСТ)
But $\quad \angle \mathrm{Q}=90^{\circ}$
$\therefore \quad \angle B^{\prime}=90^{\circ}$.
Hence proved.
2nd Part
In $\triangle \mathrm{ADC}, \angle \mathrm{D}=90^{\circ}$

$$
\begin{aligned}
\therefore \quad \mathrm{AC}^{2} & =\mathrm{AD}^{2}+\mathrm{DC}^{2} \\
& =6^{2}+8^{2} \\
& =36+64 \\
& =100
\end{aligned}
$$

In $\triangle \mathrm{ABC}$,

$$
\begin{aligned}
\mathrm{AB}^{2}+\mathrm{AC}^{2} & =24^{2}+100 \\
& =676 \\
\text { and } \quad \mathrm{BC}^{2} & =26^{2}=676 \\
\text { Clearly, } \quad \mathrm{BC}^{2} & =\mathrm{AB}^{2}+\mathrm{AC}^{2}
\end{aligned}
$$

Hence, by converse of Pythagoras Theorem, in $\triangle \mathrm{ABC}$,

$$
\angle \mathrm{BAC}=90^{\circ}
$$

$\Rightarrow \triangle \mathrm{ABC}$ is a right triangle.
OR
Given: $\triangle \mathrm{ABC}$ in which $\mathrm{AB}^{2}+\mathrm{BC}^{2}=\mathrm{AC}^{2}$
To prove: $\angle \mathrm{B}=90^{\circ}$
Construction: Draw right $\triangle \mathrm{PQR}$ right angled at Q such that $P Q=A B$ and $Q R=B C$
Proof: In right $\triangle P Q R$,

$$
\mathrm{PR}^{2}=\mathrm{PQ}^{2}+\mathrm{QR}^{2}
$$

[By Pythagoras theorem]

$$
=\mathrm{AB}^{2}+\mathrm{BC}^{2}
$$

$[\because$ By construction $\mathrm{PQ}=\mathrm{AB}, \mathrm{QR}=\mathrm{BC}]$

$$
\mathrm{PR}^{2}=\mathrm{AB}^{2}+\mathrm{BC}^{2}
$$

But $A B^{2}+\mathrm{BC}^{2}=A C^{2}$
[Given]

In $\triangle \mathrm{ABC}$ and $\triangle \mathrm{PQR}$,

$$
\begin{aligned}
& \mathrm{AB}=\mathrm{PQ} \quad \text { [By construction] } \\
& B C=Q R \\
& \text { [By construction] } \\
& \mathrm{AC}=\mathrm{PR} \\
& \text { [Proved above] } \\
& \therefore \quad \triangle \mathrm{ABC} \cong \triangle \mathrm{PQR} \quad \text { [SSS criterion] } \\
& \therefore \quad \angle \mathrm{B}=\angle \mathrm{Q} \\
& \text { [By CPCT] } \\
& \Rightarrow \quad \angle \mathrm{B}=90^{\circ} \\
& {\left[\because \angle \mathrm{Q}=90^{\circ}\right]}
\end{aligned}
$$

27. Volume $\left(V_{1}\right)$ of cone

$$
=\frac{1}{3} \pi r^{2} h=\frac{1}{3} \pi(2.5)^{2} \times 11
$$

Volume $\left(\mathrm{V}_{2}\right)$ of each spherical ball

$$
=\frac{4}{3} \pi\left(\frac{0.5}{2}\right)^{3}
$$

Let ' n ' balls be inserted in vessel.
\therefore According to question,

$$
\begin{aligned}
& n\left(\mathrm{~V}_{2}\right)=\frac{2}{5} \times \mathrm{V}_{1} \\
& \Rightarrow \quad n=\frac{2}{5} \times \frac{V_{1}}{V_{2}}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{2}{5} \times \frac{\frac{1}{3} \pi(2.5)^{2} \times 11}{\frac{4}{3} \pi\left(\frac{0.5}{2}\right)^{3}} \\
& =\frac{2}{5} \times \frac{2.5 \times 2.5 \times 11 \times 2 \times 2 \times 2}{4 \times 0.5 \times 0.5 \times 0.5} \\
& =\frac{2 \times 25 \times 25 \times 11 \times 2 \times 10}{5 \times 5 \times 5 \times 5} \\
& =44 \times 10=440 \text { balls }
\end{aligned}
$$

Value: Love towards nature.
28. It must be noted that the funnel is open from both the sides top and bottom.

Let $r_{1}=$ Radius of cylindrical portion

$$
=\frac{8}{2}=4 \mathrm{~cm}
$$

and $h_{1}=$ Height of cylindrical portion

$$
=10 \mathrm{~cm}
$$

Curved surface area of the cylindrical portion

$$
\begin{aligned}
\mathrm{C}_{1} & =2 \pi r h=2 \pi \times 4 \times 10 \\
& =80 \pi \mathrm{~cm}^{2} \\
r_{2} & =\text { Radius of the top of frustum } \\
& =\frac{18}{2}=9 \mathrm{~cm} \\
h_{2} & =\text { Height of frustum }=22-10=12 \mathrm{~cm} \\
l & =\text { slant height of the frustum } \\
& =\sqrt{h_{2}^{2}+\left(r_{2}-r_{1}\right)^{2}} \\
& =\sqrt{12^{2}+(9-4)^{2}}=\sqrt{169} \\
& =13 \mathrm{~cm} .
\end{aligned}
$$

Curved surface area of the frustum

$$
\begin{aligned}
r_{2} & =\pi\left(r_{1}+r_{2}\right) l \\
& =\pi \times 13 \times 13=169 \pi \mathrm{~cm}^{2}
\end{aligned}
$$

Now, area of the sheet required $=c_{1}+c_{2}$

$$
\begin{aligned}
& =80 \pi+169 \pi=249 \pi \\
& =249 \times \frac{22}{7}=\frac{5478}{7} \\
& =782 \frac{4}{7} \mathrm{~cm}^{2}
\end{aligned}
$$

29.

Let $\mathrm{PQ}=$ height of girl $=1.2 \mathrm{~m}$
and $\mathrm{AB}=\mathrm{CD}=88.2 \mathrm{~m}$
$=$ height of balloon from ground
$\therefore \quad \mathrm{AR}=\mathrm{CS}=88.2-1.2=87 \mathrm{~m}$
Let $\mathrm{PR}=x$ and $\mathrm{PS}=y$
\therefore In right-angled $\triangle \mathrm{ARP}$,

$$
\begin{array}{rlrl}
\tan 60^{\circ} & =\frac{\mathrm{AR}}{\mathrm{PR}} \\
\Rightarrow & \sqrt{3} & =\frac{\mathrm{AR}}{x} \\
\Rightarrow & x & =\frac{87}{\sqrt{3}} \mathrm{~m} .
\end{array}
$$

Also in right-angled $\Delta \mathrm{CSP}$,

$$
\begin{array}{ll}
\tan 30^{\circ}=\frac{\mathrm{CS}}{\mathrm{PS}} & =\frac{87}{y} \\
\Rightarrow \quad & \frac{1}{\sqrt{3}} \\
\Rightarrow & =\frac{87}{y} \\
\Rightarrow \quad y & =87 \sqrt{3} \mathrm{~m}
\end{array}
$$

\therefore Distance travelled by balloon $=y-x$

$$
\begin{aligned}
& =87 \sqrt{3}-\frac{87}{\sqrt{3}} \\
& =87\left(\sqrt{3}-\frac{1}{\sqrt{3}}\right) \\
& =87 \times\left(\frac{3-1}{\sqrt{3}}\right) \\
& =87 \times \frac{2}{\sqrt{3}} \\
& =58 \sqrt{3} \mathrm{~m} .
\end{aligned}
$$

30. Try yourself
